Skip to main content
Log in

The effect and mechanism of forsinopril on ventricular hypertrophy of SHR and left ventricular pressure overloading rat

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

The effects and mechanism of long-term angiotensin converting enzyme inhibitor (ACEI) Forsinopril on left ventricular hypertrophy of spontaneous hypertension rat (SHR) and left ventricular pressure overloading rat were studied. The left ventricular index (left ventricle weight/body weight) was used to evaluate left ventricular hypertrophy and the in situ hybridization to investigate the TGF-β1 gene expression in left ventricle. The results showed that Forsinopril significantly decreased the left ventricular index of both SHR and left ventricle pressure overloading rat. Forsinopril reduced the integral photic density of TGF-β1 gene statement from 2.836±0.314 to 1.91±0.217 (P<0.01,n=8) of SHR rat and from 3.071±0.456 to 2.376±0.379 (P<0.01,n=8) of left ventricular pressure overloading rat respectively. It was concluded that Forsinopril could prevent the occurrence of left ventricular hypertrophy and reduce the TGF-β1 gene expression in left ventricle of both SHR and left ventricular pressure overloading rat significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Leri A, Liu B Set al. Angiotensin II stimulation in vitro induces hypertrophy of normal and postinfarcted ventricular myocytes. Circ Res, 1998, 82: 1145

    Article  CAS  PubMed  Google Scholar 

  2. Michel L, Pascal G, Christian Get al. Ramipril-induced regression of left ventricular hypertrophy in treared hypertensive individuals. Hypertension, 1995, 25: 92

    Article  Google Scholar 

  3. Kim N N, Villarreal F J, Printz M Pet al. Trophic effects of angiotensin II on neonatal rat cardiac myocytes are mediated by cardiac fibroblasts. Am J Physiol, 1995, 269 (3 Pt 1): E426

    CAS  PubMed  Google Scholar 

  4. Kromer E P, Riegger G A. Effects of long-term angiotensin converting enzyme inhibition on myocardial hypertrophy in experimental aortic stenosis in the rat. Am J Cardiol, 1988, 62 (1): 161

    Article  CAS  PubMed  Google Scholar 

  5. Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest, 1990, 85 (2): 507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parker T G, Chow K L, Schwartz R Jet al. Differential regulation of skeletal alpha-actin transcription in cardiac muscle by two fibroblast growth factors. Proc Natl Acad Sci USA, 1990, 87 (18): 7066

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rossi P, Karsenty G, Roberts A Bet al. A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta. Cell, 1988, 52 (3): 405

    Article  CAS  PubMed  Google Scholar 

  8. Inagaki Y, Truter S, Ramirez F. Transforming growth factor-beta stimulates alpha 2 (I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem, 1994, 269 (20): 14828

    Article  CAS  PubMed  Google Scholar 

  9. Jimenez S A, Varga J, Olsen Aet al. Functional analysis of human alpha 1 (I) procollagen gene promoter. Differential activity in collagen-producing and-nonproducing cells and response to transforming growth factor beta 1. J Biol Chem, 1994, 269 (17): 12684

    Article  CAS  PubMed  Google Scholar 

  10. Edwards D R, Murphy G, Reynolds J Jet al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J, 1987, 6 (7): 1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laiho M, Saksela O, Andreasen P Aet al. Enhanced production and extracellular deposition of the endothelial-type plasminogen activator inhibitor in cultured human lung fibroblasts by transforming growth factor-beta. J Cell Biol, 1986, 103 (6 Pt 1): 2403

    Article  CAS  PubMed  Google Scholar 

  12. Sharma H S, van Heugten H A, Goedbloed M Aet al. Angiotensin II induced expression of transcription factors precedes increase in transforming growth factor-beta 1 mRNA in neonatal cardiac fibroblasts. Biochem Biophys Res Commun, 1994, 205 (1): 105

    Article  CAS  PubMed  Google Scholar 

  13. Kim S, Ohta K, Hamaguchi Aet al. Angiotensin II type I receptor antagonist inhibits the gene expression of transforming growth factor-beta 1 and extracellular matrix in cardiac and vascular tissues of hypertensive rats. J Pharmacol Exp Ther, 1995, 273 (1): 509

    CAS  PubMed  Google Scholar 

  14. Campbell S E, Katwa L C. Angiotensin II stimulated expression of transforming growth factor-betal in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol, 1997; 29 (7): 1947

    Article  CAS  PubMed  Google Scholar 

  15. Tsutomu Y, Issei K, Sumiyo Ket al. Angiotensin II Partly Mediates Mechanical Stress Induced Cardiac Hypertrophy. Circ Res, 1995, 77: 258

    Article  Google Scholar 

  16. Kazuhisa K, Hiroaki M, Satoshi Met al. Mechanical Stretch Induces Enhanced Expression of Angiotensin II Receptor Subtypes in Neonatal Rat Cardiac Myocytes. Circ Res, 1996, 79: 887

    Article  Google Scholar 

  17. Kurtz T W, Simonet L, Kabra P Met al. Cosegregation of the renin allele of the spontaneously hypertensive rat with an increase in blood pressure. J Clin Invest, 1990, 85 (4): 1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang L, Summers K M, West M J. Angiotensin I converting enzyme gene cosegregates with blood pressure and heart weight in F2 progeny derived from spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin Exp Hypertens, 1996, 18 (6): 753

    Article  CAS  PubMed  Google Scholar 

  19. Hilbert P, Lindpaintner K, Beckmann J Set al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hyperten-sive rats. Nature, 1991, 353 (6344): 521

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

HUANG Kai, male, born in 1969, M. D., Ph. D, Lecturer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kai, H., Guizhu, D. The effect and mechanism of forsinopril on ventricular hypertrophy of SHR and left ventricular pressure overloading rat. Current Medical Science 22, 17–20 (2002). https://doi.org/10.1007/BF02904778

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904778

Key words

Navigation