Skip to main content

Advertisement

Log in

Prodrugs in cancer chemotherapy

  • Seminar
  • Published:
Pathology & Oncology Research

Abstract

At present, chemotherapy is not very effective against common solid cancers especially once they have metastasised. However, laboratory experiments and studies on dose intensification in humans have indicated that some anti-cancer agents might be curative but only if the dose given was very much higher than that presently obtainable clinically. Prodrugs, activated by enzymes expressed at raised level in tumors, can deliver at least 50-fold the normal dose and can cure animals with tumors normally resistant to chemotherapy. This approach has not yet proved to be practicable clinically because of the rarity of human tumors expressing a high level of an activating enzyme. However, new therapies have been proposed overcome this limitation of prodrug therapy. Enzymes that activate prodrugs can be directed to human tumor xenografts by conjugating them to tumor associated antibodies. After allowing for the conjugate to clear from the blood a prodrug is administered which is normally inert but which is activated by the enzyme delivered to the tumor. This procedure is referred to as ADEPT (antibody-directed enzyme prodrug therapy). Early clinical trials are promising and indicate that ADEPT may become an effective treatment for all solid cancers for which tumor associated or tumor specific antibodies are known. Tumors have also been targeted with the genes encoding for a prodrug activating enzymes. This approach has been called genedirected enzyme prodrug therapy (GDEPT) or VDEPT (virus-directed enzyme prodrug therapy) and has shown good results in animal models. These new therapies may finally realise the potential of prodrugs in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knox RJ, Friedlos F, Marchbank T and Roberts JJ: Bioactivation of CB 1954: reaction of the active 4-hydroxylamino derivative with thioesters to form the ultimate DNA- DNA interstrand crosslinking species. Biochem Pharmacol 42:1691–1697, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Knox RJ, Friedlos F and Boland MP: The bioactivation of CB 1954 and its use as a prodrug in antibody-directed enzyme prodrug therapy (ADEPT). Cancer Metastasis Rev 12:195–212, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Roberts JJ, Friedlos F and Knox RJ: CB 1954 (2,4-dinitro-5- aziridinyl benzamide) becomes a DNA interstrand crosslinking agent in Walker tumor cells. Biochem Biophys Res Commun 140:1073–1078, 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Cobb LM, Connors TA, Elson LA, et al: 2,4-dinitro-5-ethyl- eneiminobenzamide (CB 1954): a potent and selective inhibitor of the growth of the Walker carcinoma 256. Biochem Pharmacol 18:1519–1527, 1969.

    Article  PubMed  CAS  Google Scholar 

  5. Connors TA and Melzack DH: Studies on the mechanism of action of 5-aziridinyl-2,4-dinitrobenzamide (CB 1954), a selective inhibitor of the Walker tumor. Int J Cancer 7:86–92, 1971.

    Article  PubMed  CAS  Google Scholar 

  6. Connors TA and Whisson ME: Cure of mice bearing advanced plasma cell tumors with aniline mustard: the relationship between glucuronidase activity and tumor sensitivity. Nature 210:866–867, 1966.

    Article  PubMed  CAS  Google Scholar 

  7. Connors TA, Jeney A, Warwick GP and Whisson ME: Some factors influencing the sensitivity of tumors to nitrogen mustards. In: Isotopes in Experimental Pharmacology (Ed. Roth LJ), pp. 433–438. University of Chicago Press, Chicago and London, 1965.

    Google Scholar 

  8. Carl PL, Chakravarty PK and Katzenellenbogen JA: A novel connector linkage applicable in prodrug design. J Med Chem 24:479–480, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Manson MM, Legg RF, Watson JV, et al: An examination of the relative resistances to aflatoxin B1 and susceptibilities to γ-glu- tamyl para-phenylene diamine mustard of γ-glutamyl transferase negative and positive cell lines. Carcinogenesis 2:661- 670, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Boland MP, Knox RJ and Roberts JJ: The differences in kinetics of rat and human DT diaphorase result in a differential sensitivity of derived cell lines to CB 1954 (5-(aziridin-1- yl)-2,4-dinitrobenzamide). Biochem Pharmacol 41:867–875, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Young CW, Yagoda A, Bittar ES, et al: Therapeutic trial of aniline mustard in patients with advanced cancer. Comparison of therapeutic response with cytochemical assessment of tumor cell β-glucuronidase activity. Cancer 38:1887–1895, 1976.

    Article  PubMed  CAS  Google Scholar 

  12. Ehrlich P: The collected papers of P. Ehrlich. Pergammon Press, London, 1960.

    Google Scholar 

  13. Shockley TR, Lin K, Nagy JA, et al: Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res 52:367–376, 1992.

    PubMed  CAS  Google Scholar 

  14. Wawrzynczak EJ: Systemic immunotoxin therapy of cancer: advances and prospects. Br J Cancer 64:624–630, 1991.

    PubMed  CAS  Google Scholar 

  15. Pimm MV: Drug-momoclonal antibody conjugates for cancer therapy: potential and limitations. CRC Crit Rev Ther Drug Carrier Syst 5:189–227, 1988.

    CAS  Google Scholar 

  16. Bagshawe KD, Springer CJ, Searle F, et al: A cytotoxic agent can be generated selectively at cancer sites. Br J Cancer 58:700–703, 1988.

    PubMed  CAS  Google Scholar 

  17. Bagshawe KD: Antibody directed enzymes revive anti-cancer prodrugs concept. Br J Cancer 56:531–532, 1987.

    PubMed  CAS  Google Scholar 

  18. Bagshawe KD: ADEPT and related concepts. Cell Biophys 25:83–91, 1994.

    Google Scholar 

  19. Bagshawe KD: Antibody-directed enzyme prodrug therapy - a review. Drug Development Research 34:220–230, 1995.

    Article  CAS  Google Scholar 

  20. Knox RJ and Connors TA: Antibody-directed enzyme prodrug therapy. Clin Immunother 3:136–153, 1995.

    Google Scholar 

  21. Melton RG, Knox RJ and Connors TA: Antibody-directed enzyme prodrug therapy (ADEPT). Drugs Fut 21:167–181, 1996.

    CAS  Google Scholar 

  22. Melton RG and Sherwood RF: Antibody-enzyme conjugates for cancer therapy. J Natl Cancer Inst 88:153–165, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Stanislawski M, Rousseau V, Goavec M and Ito H: Immunotoxins containing glucose oxidase and lactoperoxidase with tumoricidal properties: in vitro killing effectiveness in a mouse plasmacytoma cell model. Cancer Res 49:5497- 5504, 1989.

    PubMed  CAS  Google Scholar 

  24. Bagshawe KD, Sharma SK, Springer CJ, et al: Antibody directed enzyme prodrug therapy (ADEPT): clinical report. Dis Markers 9:233–238, 1991.

    PubMed  CAS  Google Scholar 

  25. Bagshawe KD, Sharma SK, Springer CJ and Antoniw P: Antibody directed enzyme prodrug therapy: a pilot-scale clinical trial. Tumor Targeting 1:17–29, 1995.

    Google Scholar 

  26. Springer CJ, Poon GK, Sharma SK and Bagshawe KD: Identification of prodrug, active drug, and metabolites in an ADEPT clinical study. Cell Biophys 22:9–26, 1993.

    PubMed  CAS  Google Scholar 

  27. Dowell RI, Springer CJ, Davies DH, et al: New mustard pro- drugs for antibody-directed enzyme prodrug therapy: alterna- tives to the amide link. J Med Chem 39:1100–1105, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Partridge LJ: Production of catalytic antibodies using combinatorial libraries. Biochem Soc Trans 21:1096–1098, 1993.

    PubMed  CAS  Google Scholar 

  29. Chester KA, Begent RH, Robson L, et al: Phage libraries for generation of clinically useful antibodies. Lancet 343:455- 456, 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Goshorn SC, Svensson HP, Kerr DE, et al: Genetic construc- tion, expression, and characterization of a single chain anticarcinoma antibody fused to β-lactamase. Cancer Res 53:2123–2127, 1993.

    PubMed  CAS  Google Scholar 

  31. Bosslet K, Czech J, Seemann G, et al: Fusion protein mediated prodrug activation (FMPA) in vivo. Cell Biophys 25:51–63, 1994.

    Google Scholar 

  32. Wentworth P, Datta A, Blakey D, et al: Toward antibody- directed “abzyme” prodrug therapy, ADAPT: carbamate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing. Proc Natl Acad Sci U S A 93:799–803, 1996.

    Article  PubMed  CAS  Google Scholar 

  33. Oldfield EH, Ram Z, Culver KW, et al: Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum Gene Ther 4:39–69, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Hart IR and Vile RG: Targeted gene therapy. Br Med Bull 51:647–655, 1995.

    PubMed  CAS  Google Scholar 

  35. Consalvo M, Mullen CA, Modesti A, et al: 5-Fluorocytosine- induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J Immunol 154:5302–5312, 1995.

    PubMed  CAS  Google Scholar 

  36. Freeman SM, Whartenby KA, Freeman JL, et al: In situ use of suicide genes for cancer therapy. Semin Oncol 23:31–45, 1996.

    PubMed  CAS  Google Scholar 

  37. Mullen CA, Coale MM, Lowe R and Blaese RM: Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 54:1503–1506, 1994.

    PubMed  CAS  Google Scholar 

  38. Mullen CA: Metabolic suicide genes in gene therapy. Pharmacol Ther 63:199–207, 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Robinson DF and Maxwell IH: Suppression of single and double nonsense mutations introduced into the diphtheria toxin A- chain gene: a potential binary system for toxin gene therapy. Hum Gene Ther 6:137–143, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Cook DR, Maxwell IH, Glode LM, et al: Gene therapy for B- cell lymphoma in a SCID mouse model using an immunoglobulin-regulated diphtheria toxin gene delivered by a novel adenovirus-polylysine conjugate. Cancer Biother 9:131–141, 1994.

    PubMed  CAS  Google Scholar 

  41. Maxwell IH, Glode LM and Maxwell F: Expression of diphtheria toxin A-chain in mature B-cells: a potential approach to therapy of B-lymphoid malignancy. Leuk Lymphoma 7:457- 462, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Maxwell IH, Glode LM and Maxwell F: Expression of the diphtheria toxin A-chain coding sequence under the control of promoters and enhancers from immunoglobulin genes as a means of directing toxicity to B-lymphoid cells. Cancer Res 51:4299–4304, 1991.

    PubMed  CAS  Google Scholar 

  43. Mendelsohn ML: The growth fraction: a new concept applied to tumors. Science 132:1496, 1960.

    Google Scholar 

  44. Miller N and Vile R: Targeted vectors for gene therapy. FASEB J. 9:190–199, 1995.

    PubMed  CAS  Google Scholar 

  45. Huber BE, Richards CA and Krenitsky TA: Retroviral-mediat- ed gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci U S A 88:8039–8043, 1991.

    Article  PubMed  CAS  Google Scholar 

  46. Borrelli E, Heyman R, Hsi M and Evans RM: Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci USA 85:7572–7576, 1988.

    Article  PubMed  CAS  Google Scholar 

  47. Moolten FS, Wells JM and Mroz PJ: Multiple transduction as a means of preserving ganciclovir chemosensitivity in sarcoma cells carrying retrovirally transduced herpes thymidine kinase genes. Cancer Lett 64:257–263, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Abe A, Takeo T, Emi N, et al: Transduction of a drug-sensitive toxic gene into human leukemia cell lines with a novel retroviral vector. Proc Soc Exp Biol Med 203:354–359, 1993.

    PubMed  CAS  Google Scholar 

  49. Barba D, Hardin J, Ray J and Gage FH: Thymidine kinasemediated killing of rat brain tumors. J Neurosurg 79:729–735, 1993.

    Article  PubMed  CAS  Google Scholar 

  50. Vile RG and Hart IR: Use of tissue specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratu- moral injection of DNA. Cancer Res 53:3860–3864, 1993.

    PubMed  CAS  Google Scholar 

  51. Chen SH, Shine HD, Goodman JC, et al: Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci USA 91:3054–3057, 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Smythe WR, Hwang HC, Amin KM, et al: Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSVtk) gene to thoracic neoplasms: an effective in vitro drug sensitization system. Cancer Res 54:2055–2059, 1994.

    PubMed  CAS  Google Scholar 

  53. Tanaka T, Kanai F, Okabe S, et al: Adenovirus-mediated pro-drug gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells in vitro. Cancer Res 56:1341–1345, 1996.

    PubMed  CAS  Google Scholar 

  54. Tong XW Block A, Chen SH, et al: In vivo gene therapy of ovarian cancer by adenovirus-mediated thymidine kinase gene transduction and ganciclovir administration. Gynecol Oncol 61:175–179, 1996.

    Article  Google Scholar 

  55. Tong XW, Block A, Chen SH, et al: Adenovirus-mediated thymidine kinase gene transduction in human epithelial ovarian cancer cell lines followed by exposure to ganciclovir. Anticancer Res 16:1611–1617, 1996.

    PubMed  CAS  Google Scholar 

  56. Culver KW, Ram Z, Wallbridge S, et al: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550–1552, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Ram Z, Culver KW, Walbridge S, et al: Toxicity studies of retroviral-mediated gene transfer for the treatment of brain tumors. J Neurosurg 79:400–407, 1993.

    PubMed  CAS  Google Scholar 

  58. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann JL and Klatzmann D: Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA 90:7024–7028, 1993.

    Article  PubMed  CAS  Google Scholar 

  59. Manome Y, Abe M, Hagen MF, et al: Enhancer sequences of the DF3 gene regulate expression of the herpes simplex virus thymidine kinase gene and confer sensitivity of human breast cancer cells to ganciclovir. Cancer Res 54:5408–5413, 1994.

    PubMed  CAS  Google Scholar 

  60. O’Malley B, Jr., Chen SH, Schwartz MR and Woo SL: Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mouse model. Cancer Res 55:1080–1085, 1995.

    PubMed  CAS  Google Scholar 

  61. Osaki T, Tanio Y, Tachibana I, et al: Gene therapy for carci-noembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 54:5258–5261, 1994.

    PubMed  CAS  Google Scholar 

  62. Vile RG, Nelson JA, Castleden S, et al: Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res 54:6228–6234, 1994.

    PubMed  CAS  Google Scholar 

  63. Freeman SM, Abboud CN, Whartenby KA, et al: The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 53:5274–5283, 1993.

    PubMed  CAS  Google Scholar 

  64. Bi WL, Parysek LM, Warnick R and Stambrook PJ: In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther 4:725–731, 1993.

    Article  PubMed  CAS  Google Scholar 

  65. Fick J, Barker FG, 2nd, Dazin P, et al: The extent of hetero-cellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci USA 92:11071–11075, 1995.

    Article  PubMed  CAS  Google Scholar 

  66. Gagandeep S, Brew R, Green B, et al: Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect”. Cancer Gene Ther 3:83–88, 1996.

    PubMed  CAS  Google Scholar 

  67. Mullen CA, Kilstrup M and Blaese RM: Transfer of the bacterial gene for cytosine deaminase to mammalian cells conferslethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA 89:33–37, 1992.

    Article  PubMed  CAS  Google Scholar 

  68. Huber BE, Austin EA, Good SS, et al: In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 53:4619–4626, 1993.

    PubMed  CAS  Google Scholar 

  69. Huber BE, Austin EA, Richards CA, et al: Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 91:8302–8306, 1994.

    Article  PubMed  CAS  Google Scholar 

  70. Hoganson DK, Batra RK, Olsen JC and Boucher RC: Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma. Cancer Res 56:1315–1323, 1996.

    PubMed  CAS  Google Scholar 

  71. Connors TA: The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Therapy 2:1–9, 1995.

    Google Scholar 

  72. Wei MX, Tamiya T, Chase M, et al: Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum Gene Ther 5:969–978, 1994.

    Article  PubMed  CAS  Google Scholar 

  73. Chen L and Waxman DJ: Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res 55:581–589, 1995.

    PubMed  CAS  Google Scholar 

  74. Manome Y, Wen PY, Chen L, et al: Gene therapy for malignant gliomas using replication incompetent retroviral and adenoviral vectors encoding the cytochrome P450 2B1 gene together with cyclophosphamide. Gene Ther 3:513–520, 1996.

    PubMed  CAS  Google Scholar 

  75. Chen L, Waxman DJ, Chen D and Kufe DW: Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Cancer Res 56:1331–1340, 1996.

    PubMed  CAS  Google Scholar 

  76. Chen L, Chen D, Manome Y, et al: Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. J Clin Invest 96:2775–2782, 1995.

    Article  PubMed  CAS  Google Scholar 

  77. Wei MX, Tamiya T, Rhee RJ, et al: Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res 1:1171–1177, 1995.

    PubMed  CAS  Google Scholar 

  78. Romanini A, Sobrero AF, Chou TC, et al: Enhancement of trimetrexate cytotoxicity in vitro and in vivo by carboxypeptidase G2. Cancer Res 49:6019–6023, 1989.

    PubMed  CAS  Google Scholar 

  79. Marais R, Spooner RA, Light Y, et al: Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res 56:4735–4742, 1996.

    PubMed  CAS  Google Scholar 

  80. Minton NP, Atkinson T, Bruton CJ and Sherwood RF: The complete nucleotide sequence of the Pseudomomas gene coding for carboxypeptidase G2. Gene 31:31–38, 1984.

    Article  PubMed  CAS  Google Scholar 

  81. Springer CJ, Spooner RA, Light Y, et al: Intracellular and extracellular expression of the carboxypeptidase G2 enzyme for activation of a mustard prodrug in gene-directed enzyme prodrug therapy (GDEPT). B J Cancer 75 (Suppl 1): 13, 1997.

    Google Scholar 

  82. Michael NP, Brehm JK, Anlezark GM and Minton NP: Physical characterisation of the Escherichia coli B gene encoding nitroreductase and its over-expression in Escherichia coli K12. Fems Microbiol Lett 124:195–202, 1994.

    Article  PubMed  CAS  Google Scholar 

  83. Anlezark GM, Melton RG, Sherwood RF, et al: Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase. Biochem Pharmacol 50:609–618, 1995.

    Article  PubMed  CAS  Google Scholar 

  84. Knox RJ, Friedlos F, Sherwood RF, et al: The bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) - II. A comparison of an Escherichia coli nitroreductase and Walker DT diaphorase. Biochem Pharmacol 44:2297–2301, 1992.

    Article  PubMed  CAS  Google Scholar 

  85. Knox RJ, Friedlos F, Jarman M and Roberts JJ: A new cytotoxic, DNA interstrand crosslinking agent, 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide, is formed from 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by a nitroreductase enzyme in Walker carcinoma cells. Biochem Pharmacol 37:4661–4669, 1988.

    Article  PubMed  CAS  Google Scholar 

  86. Anlezark GM, Melton RG, Sherwood RF, et al: The bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) - I. Purification and properties of a nitroreductase enzyme from Escherichia coli- a potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol 44:2289–2295, 1992.

    Article  PubMed  CAS  Google Scholar 

  87. Knox RJ, Friedlos F, Jarman M, et al: Virtual cofactors for an Escherichia-coli nitroreductase enzyme - relevance to reductively activated prodrugs in antibody-directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol 49:1641–1647, 1995.

    Article  PubMed  CAS  Google Scholar 

  88. Friedlos F and Knox RJ: Metabolism of NAD(P)H by blood components. Relevance to bioreductively activated prodrugs in a targeted enzyme therapy system. Biochem Pharmacol 44:631–635, 1992.

    Article  PubMed  CAS  Google Scholar 

  89. Bridgewater JA, Springer CJ, Knox RJ, et al: Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer 31a: 2362–2370, 1995.

    Article  PubMed  CAS  Google Scholar 

  90. Bailey SM and Hart IR: Nitroreductase activation of CB1954—an alternative ‘suicide’ gene system. Gene Ther 4:80–81, 1997.

    Article  PubMed  CAS  Google Scholar 

  91. Bridgewater JA, Knox RJ, Pitts JD, et al: The bystander effect of the nitroreductase CB 1954 enzyme prodrug system is due to a cell-permeable metabolite. Hum Gene Ther 8:709–717, 1997.

    Article  PubMed  CAS  Google Scholar 

  92. Bailey SM, Knox RJ, Hobbs SM, et al: Investigation of alternative prodrugs for use with E. coli nitroreductase in ‘suicide gene’ approaches to cancer therapy. Gene Ther 3:1143–1150, 1996.

    PubMed  CAS  Google Scholar 

  93. Friedlos F, Denny WA, Palmer BD and Springer CJ: Mustard prodrugs for activation by Escherichia coli nitroreductase in gene-directed enzyme prodrug therapy. J Med Chem 40:1270–1275, 1997.

    Article  PubMed  CAS  Google Scholar 

  94. Manger AB, Burke PJ, Somani HH, et al: Self-immolative prodrugs: candidates for antibody-directed enzyme prodrug therapy in conjunction with a nitroreductase enzyme. J Med Chem 37:3452–3458, 1994.

    Article  Google Scholar 

  95. Hay MP, Wilson WR and Denny WA: A novel enediyne pro-drug for antibody-directed enzyme prodrug therapy (ADEPT) using E. coli B nitroreductase. Bioorg Med Chem Lett 5:2829–2834, 1995.

    Article  CAS  Google Scholar 

  96. Tercel M, Denny WA and Wilson WR: A novel nitro-substituted seco-CI: application as a reductively activated ADEPT prodrug. Bioorg Medicinal Chem Letter 6:2741–2744, 1996.

    Article  CAS  Google Scholar 

  97. Lee M, Simpson JE, Woo S, et al: Synthesis of an aminopropyl, analog of the experimental anticancer drug tallimustine, and activation of its 4- nitrobenzylcarbamoyl prodrug by nitroreductase and NADH. Bioorg Medicinal Chem Letter 7:1065–1070, 1997.

    Article  CAS  Google Scholar 

  98. Patterson AV, Zhang H, Moghaddam A, et al: Increased sensitivity to the prodrug 5′-deoxy-5-fluorouridine and modulation of 5-fluoro-2′-deoxyuridine sensitivity in MCF-7 cells transfected with thymidine phosphorylase. Br J Cancer 72:669–675, 1995.

    PubMed  CAS  Google Scholar 

  99. Manome Y, Wen PY, Dong Y, et al: Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med 2:567–573, 1996.

    Article  PubMed  CAS  Google Scholar 

  100. Frei E, Teicher BA, Holden SA, et al: Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Res 48:6417–6423, 1988.

    PubMed  CAS  Google Scholar 

  101. Fitzsimmons SA, Workman P, Grever M, et al: Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9. J Natl Cancer Inst 88:259–269, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A Connors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knox, R.J., Connors, T.A. Prodrugs in cancer chemotherapy. Pathol. Oncol. Res. 3, 309–324 (1997). https://doi.org/10.1007/BF02904292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904292

Key words

Navigation