Skip to main content
Log in

Molecular dynamic study of the anomalous behavior of heat capacity in a methanol-water mixture

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular dynamic (MD) method is used to study the anomalous behavior of heat capacity in the range of small concentrations of methanol-water solutions. The behavior of the concentration dependence of heat capacity as calculated by the MD method qualitatively coincides with the experimental values. The calculation of contributions from different types of interaction to heat capacity showed that the greatest contribution is made by the interaction between the methanol molecules. The reason for the anomalous behavior of heat capacity is discussed based on the calculation of the mean force potential, radial distribution functions, and hydrogen bond network parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nakayama and K. Shinoda,J. Chem. Thermodyn.,3, 401–412 (1971).

    Article  CAS  Google Scholar 

  2. V. P. Belousov and M. Yu. Panov,Thermodynamics of Aqueous Solutions of Nonelectrolytes [in Russian], Khimiya, Leningrad (1983).

    Google Scholar 

  3. A. M. Kolker, V. I. Klopov, and G. A. Krestov,Zh. Fix. Khim.,50, No. 9, 2432–2434 (1976).

    Google Scholar 

  4. B. Z. Gorbunov and Yu. I. Naberukhin,Zh. Strukt. Khim.,13, No. 1, 20–31 (1972).

    CAS  Google Scholar 

  5. N. V. Korsunskii and Yu. I. Naberukhin,ibid.,18, No. 3, 587–592 (1977).

    CAS  Google Scholar 

  6. M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids, Clarendon Press, London (1987).

    Google Scholar 

  7. S. Okazaki, K. Nakanishi, and H. Touhara,J. Chem. Phys.,78, 454–469 (1983).

    Article  CAS  Google Scholar 

  8. G. Palinkas, E. Hawlicka, and K. Heinzinger,J. Phys. Chem.,91, 4334–4341 (1987).

    Article  CAS  Google Scholar 

  9. M. S. Skaf, T. Fonseka, and B. M. Ladanyi,J. Chem. Phys.,98, 8929–8945 (1993).

    Article  CAS  Google Scholar 

  10. I. M. Svishchev and P. G. Kusalik,ibid.,100, 5165–5171 (1994).

    Article  CAS  Google Scholar 

  11. J. W. Caldwell and P. A. Kollman,J. Phys. Chem.,99, 6208–6217 (1995).

    Article  CAS  Google Scholar 

  12. H. Tanaka and K. E. Gubbins,J. Chem. Phys.,97, 2626–2635 (1992).

    Article  CAS  Google Scholar 

  13. J. Chandrasekhar, D. G. Spellmeyer, and W. L. Jorgensen,J. Am. Chem. Soc,106, 903–912 (1984).

    Article  CAS  Google Scholar 

  14. G. C. Benson and P. J. D. Arcy,J. Chem. Eng. Data,27, 439–442 (1982).

    Article  CAS  Google Scholar 

  15. L. Lumry,Faraday Symp. Chem. Soc,17, 79 (1982).

    Article  Google Scholar 

  16. F. Franks, in:Water: A Comprehensive Treatise, F. Franks (ed.), Vol. 4, Plenum, New York (1973), p. 91.

    Google Scholar 

  17. M. Kiselev and K. Heinzinger,J. Chem. Phys.,105, 650–657 (1996).

    Article  CAS  Google Scholar 

  18. Y. P. Puhovski and B. M. Rode,J. Phys. Chem.,99, 1566–1576 (1995).

    Article  CAS  Google Scholar 

  19. I. I. Vaisman and M. I. Berkowitz,J. Am. Chem. Soc,114, 7889–7896 (1992).

    Article  CAS  Google Scholar 

  20. F. Sciortino, A. Geiger, and H. E. Stanley,Nature,354, 218–221 (1991).

    Article  CAS  Google Scholar 

  21. N. N. Medvedev and Yu. I. Naberukhin,Zh. Strukt. Khim.,28, No. 3, 117–132 (1987); Yu. I. Naberukhin, V. P. Voloshin, and N. N. Medvedev,Mol. Phys.,73, 917–936 (1991).

    CAS  Google Scholar 

  22. M. Kiselev, M. Poxleitner, J. Seitz-Beywl, and K. Heinzinger,Z. Naturforsch.,48a, 806–810 (1993).

    Google Scholar 

  23. I. I. Vaisman, F. K. Brown, and A. Tropsha,J. Phys. Chem.,98, 5559–5564 (1994).

    Article  CAS  Google Scholar 

  24. R. J. Speedy and M. Mezei,ibid.,89, 171–175 (1985).

    Article  CAS  Google Scholar 

  25. C. C. Angell, in:Water: A Comprehensive Treatise, F. Franks (ed.), Plenum, New York (1983).

    Google Scholar 

  26. M. G. Kiselev, I. I. Vaisman, Yu. P. Pukhovskii, and Yu. M. Kessler, in:Thermodynamics of Nonelectrolyte Solutions [in Russian], G. A. Krestov (ed.), Institute of Nonaqueous Solution Chemistry, Ivanovo (1989), p. 79.

    Google Scholar 

  27. Y. Marcus and A. Ben-Naim,J. Chem. Phys.,83, 4744–4759 (1985).

    Article  CAS  Google Scholar 

  28. J. Gao,J. Am. Chem. Soc,115, 2930–2935 (1993).

    Article  CAS  Google Scholar 

  29. R. A. Friedman and M. Mezei,J. Chem. Phys.,102, 419–425 (1995).

    Article  CAS  Google Scholar 

  30. M. H. New and B. J. Berne,J. Am. Chem. Soc,117, 7172–7179 (1995).

    Article  CAS  Google Scholar 

  31. Yu. I. Naberukhin, V. A. Lunnikov, G. G. Malenkov, and E. A. Zheligovskaya,Zh. Strukt. Khim.,38, No. 4, 713–722 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromZhurnal Strukturnoi Khimii, Vol.40, No. 2, pp. 304–313, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noskov, S.Y., Kiselev, M.G. & Kolker, A.M. Molecular dynamic study of the anomalous behavior of heat capacity in a methanol-water mixture. J Struct Chem 40, 253–261 (1999). https://doi.org/10.1007/BF02903654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02903654

Keywords

Navigation