Skip to main content
Log in

Crystal structure of the Hofmann-dma type clathrate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Seven new Hofmann-dma type clathrates Cd(dma)2Ni(CN)4-xG (x = 1, G = aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine and x = 2, G = 2,4,6-trim ethylaniline) were prepared by replacing the amine in a Hofmann type clathrate Cd(NH3)2Ni(CN)4-2G by dimethylamine (dma). The structure of the Hofmann-dma type clathrate is formed with stacked host two-dimensional metal complexes of Cd(dma)2 Ni(CN)4 and guest molecules accommodated in the space between the stacked host complexes. This basic structure scheme is the same as that of the Hofmann type clathrate. However, the guest species accommodated in the Hofmann-dma type clathrate are more various than those of the Hofmann type clathrate, and their crystal structures are classified into four types depending on the geometry of the guest species. In order to clarify the structure of the Hofmann-dma type clathrate, single crystal X-ray diffraction experiments were canied out on the seven new clathrates, and the crystal structures of the o-, m- and p- toluidine clathrates were refined. The X-ray structure analyses showed that the host two-dimensional metal complex of the Hofmann-dma tvpe clathrate has stmctural flexibility to form a puckered structure, which results from the angular distortion of the bond between Cd and N of the cyanide bridge in the host two-dimensional complex. This stmctural flexibility of the host complex leads to the diversity of crystal structures and guest species in Hofmann-dma type clathrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Homann and F. Küspert,Z. Anorg. Chem.,15, 204–207 (1987);

    Article  Google Scholar 

  2. K. A. Hofmann and F. Höchtlen,Ber.,36, 1149–1151 (1903);

    CAS  Google Scholar 

  3. K. A. Homann and H. Arnoldi,Ber.,39, 338–344 (1906).

    Google Scholar 

  4. H. M. Powell,J. Chem. Soc., 61–73 (1948);

  5. H. M. Powell and J. H. Rayner,Nature,163, 566–567 (1949)

    Article  CAS  Google Scholar 

  6. J. H. Rayner and H. M. Powell,J. Chem. Soc, 319–328 (1952).

  7. R. Baur and G. Schwarzenbach,Helv. Chim. Acta,43, 842–847(1960).

    Article  CAS  Google Scholar 

  8. T. Iwamoto, T. Miyoshi, T. Miyamoto, et al.,Bull. Chem. Soc. Jpn.,40, 1174–1178 (1967);

    Article  CAS  Google Scholar 

  9. T. Nakano, T. Miyoshi, T. Iwamoto, and Y. Sasaki,ibid.,40, 1297 (1967);

    Article  CAS  Google Scholar 

  10. M. Monta, T. Miyoshi, T. Miyamoto, et al.,ibid.,40, 1556 (1967);

    Article  Google Scholar 

  11. T. Iwamoto, T. Nakano, M. Morita, et al.,Inorg. Chim. Acta,2, 313–316 (1968);

    Article  CAS  Google Scholar 

  12. T. Iwamoto, in:Inclusion Compounds, Vol. 1, J. L. Atwood, J. E. Davies, and D. D. MacNicol (eds.), Academic Press (1984), pp. 29–57.

  13. Y. Sasaki,Bull. Chem. Soc. Jpn.,42, 2412 (1969);

    Article  CAS  Google Scholar 

  14. S. Nishikiori, T. Kitazawa, R. Kuroda, and T. Iwamoto,J. Incl. Phenom.,7, 369–377 (1989).

    Article  CAS  Google Scholar 

  15. T. Iwamoto,Inorg. Chim. Acta,2, 269–272 (1968);

    Article  CAS  Google Scholar 

  16. T. Miyoshi, T. Iwamoto, and Y. Sasaki,ibid.,6, 59–64 (1972);

    Article  CAS  Google Scholar 

  17. T. Iwamoto and Y. Ohtsu,Chem. Lett., 463–468 (1972);

  18. T. Iwamoto and M. Kiyoki,Bull. Chem. Soc. Jpn.,48, 2411–2416 (1975);

    Article  Google Scholar 

  19. S. Nishikiori, T. Iwamoto, and Y. Yoshino,ibid.,53, 2236–2240 (1980);

    Article  CAS  Google Scholar 

  20. S. Nishikiori and T. Iwamoto,Chem. Lett., 1775-1776 (1981);

  21. S. Nishikiori and T. Iwamoto,Bull. Chem. Soc. Jpn.,56, 3246–3252 (1983).

    Article  CAS  Google Scholar 

  22. S. Nishikiori and T. Iwamoto,Chem. Lett., 1035–1038 (1982);

  23. S. Nishikiori and T. Iwamoto, 1129–1130 (1983);

  24. S. Nishikiori and T. Iwamoto,ibid., 319–322 (1984);

  25. S. Nishikiori and T. Iwamoto,Anal. Sci.,4, 25–30 (1988);

    Article  CAS  Google Scholar 

  26. T. Iwamoto, in:Inclusion Compounds, Vol. 5, J. L. Atwood, J. E. Davies, and D. D. MacNicol (eds.), Oxford University Press (1991), pp. 177–212.

  27. G. M. Sheldrick,SHELX-86, Program for the Solution of Crystal Structures, University of Göttingen (1985);

  28. G. M. Sheldrick,SHELXL-93, Progmm for the Refinement of Crystal Structures, Institut fur Anorganische Chemie, Germany (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromZhurnal Strukturnmoi Khimii, Vol. 40, No. 5, pp. 898–926, September–October, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikiori, S., Iwamoto, T. Crystal structure of the Hofmann-dma type clathrate. J Struct Chem 40, 726–749 (1999). https://doi.org/10.1007/BF02903449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02903449

Keywords

Navigation