Skip to main content
Log in

Evolution of the hot gas cores of clusters of galaxies,n(θ) counts and anisotropy of the cosmic background radiation

Эволюция горячих газовых остовов кластеров галактик,n(θ) диаграммы и анизотропия космического фонового излучения

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We discuss how the evolution of the diameter of the hot cores in clusters of galaxies can be inferred from the construction of then(θ) diagram. We show that information equivalent to that of then(θ) diagram can be provided by measurements at several angular scales of the anisotropies induced by the hot cores in the cosmic microwave background.

Riassunto

Si discute come l’evoluzione del diametro dei nuclei caldi di ammassi di galassie possa essere dedotta dalla costruzione del diagramman(θ). Si mostra che un’informazione equivalente a quella del diagramman(θ) può essere fornita da misure, eseguite a diverse scale angolari, delle anisotropie indotte nel fondo cosmico di microonde dai nuclei caldi.

Резюме

Мы обсуждаем, как эволюция диаметра горячих остовов в кластерах галактик может быть получена из конструкцииn(θ) диаграммы. Мы показываем, что информация, эквивалентная информации вn(θ) диаграмме, может быть получена из измерений при нескольких угловых масштабах анаизотропий, индуцированных горячими остовами, в космическом микроволновом фоновом излучении.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Sunyaev andYa. B. Zeldovich:Astrophys. Space Sci.,7, 3 (1970);Comments Astrophys. Space Phys.,4, 173 (1972).

    ADS  Google Scholar 

  2. R. Fabbri, F. Melchiorri, F. Mencaraglia andV. Natale:Astron. Astrophys.,74, L20 (1979).

    ADS  Google Scholar 

  3. However, an alternative measurement ofq 0 has been proposed, requiring only a limited number of clusters: seeJ. Silk andS. White:Astrophys. J.,226, L103 (1978);A. Cavaliere, L. Danese andG. De Zotti:Astron. Astrophys.,75, 322 (1979);P. E. Boynton: inIAU Symposium 79 (Dordrecht, 1978), p. 317.

    Article  ADS  Google Scholar 

  4. J. E. Gunn andJ. B. Oke:Astrophys. J.,195, 255 (1975);B. M. Tinsley:Nature (London) 273, 208 (1978).

    Article  ADS  Google Scholar 

  5. R. Fabbri:Lett. Nuovo Cimento,26, 77 (1979);Nuovo Cimento B,56, 125 (1980).

    Article  ADS  Google Scholar 

  6. F. Occhionero, L. Veccia-Scavalli andN. Vittorio:Astron. Astrophys. (in press).

  7. This question was pointed out to us byF. Melchiorri (private communication).

  8. F. Melchiorri andP. Boynton:Proposal to CNR and NSF for International Collaboration (1977);Atti Fondaz. Ronchi,34, 55 (1979). Cf. alsoM. Davis:Phys. Scr.,21, 717 (1980).

  9. The contribution of clusters to the background anisotropy is discussed also byY. Rephaeli:Astrophys. J.,245, 351 (1981). Our conclusions differ from those of this author in connection with the role of high-red-shift clusters.

    Article  ADS  Google Scholar 

  10. N. A. Bahcall:Annu. Rev. Astron. Astrophys.,15, 505 (1977).

    Article  ADS  Google Scholar 

  11. P. Hickson:Astrophys. J.,217, 16 (1977).

    Article  ADS  Google Scholar 

  12. X-ray data suggest the existence of two classes of clusters withD *=0.5 Mpc and 1 Mpc, respectively; seeC. Jones, E. Mandel, J. Schwarz, W. Forman, S. S. Murray andF. R. Harnden:Astrophys. J.,234, L21 (1979). Typical members of the latter class are unlikely to be good sources of Sunyaev-Zeldovich signals, since they contain highly clumped gases.

    Article  ADS  Google Scholar 

  13. See,e.g.,R. A. Sunyaev andYa. B. Zeldovich:Astron. Astrophys.,20, 189 (1972);A. G. Doroshkevich, R. A. Sunyaev andYa. B. Zeldovich: inConfrontation of Cosmological Theories with Observational Data, edited byM. S. Longair (Dordrecht, 1974);J. Ostriker: inThe Large Scale Structure of the Universe, edited byM. S. Longair andJ. Einasto (Dordrecht, 1978);R. D. Sherman:Astrophys. J.,232, 1 (1979). However, different scenarios might imply a later production of hot cores; cf.C. Norman andJ. Silk:Astrophys. J.,233, L1 (1979).

    ADS  Google Scholar 

  14. The cosmological constant provides in such models the missing mass of the Universe, rendering the isotropic models stable; see ref. (5). We stick to models withΩ 0 < 1, although the combination of a large matter density and a positive cosmological density has been advocated in ref. (6). Finally we observe that, since in our case the topology is open, no ghost images arise (V. Petrosian andE. E. Salpeter:Astrophys. J.,151, 411 (1968)). However, even in closed topologies they would have little bearing on our calculations.

    Article  ADS  Google Scholar 

  15. M. Birkinshaw, S. F. Gull andK. J. E. Northover:Mon. Not. R. Astron. Soc.,185, 245 (1978);S. C. Perrenod andC. J. Lada:Astrophys. J.,234, L173 (1979);G. Lake andR. B. Partridge:Astrophys. J.,237, 378 (1980).

    Article  ADS  Google Scholar 

  16. R. Fabbri, F. Melchiorri andV. Natale:Astrophys. Space Sci.,59, 223 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabbri, R., Natale, V. Evolution of the hot gas cores of clusters of galaxies,n(θ) counts and anisotropy of the cosmic background radiation. Nuov Cim B 64, 173–190 (1981). https://doi.org/10.1007/BF02903281

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02903281

Navigation