Advertisement

Fibers and Polymers

, Volume 5, Issue 2, pp 105–109 | Cite as

Titanium dioxide nanofibers prepared by using electrospinning method

  • Bin Ding
  • Chul Ki Kim
  • Hak Yong Kim
  • Min Kang Seo
  • Soo Jin Park
Article

Abstract

The synthesis of titanium dioxide nanofibers with 200–300 nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from 600 °C to 1000 °C.

Keywords

Hybrid nanofibers Titanium isopropoxide/Poly(vinyl acetate) Titanium dioxide Calcination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. Xu, M. A. Anderson, and J. Am,Avartsm. Adaov.,77, 1939 (1994).Google Scholar
  2. 2.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, C. Vartuli, and J. S. Beck,Nature,359, 710 (1992).CrossRefGoogle Scholar
  3. 3.
    J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, and J. L. Schlenker,J. Am. Chem. Soc.,114, 10834 (1992).CrossRefGoogle Scholar
  4. 4.
    P. Ball,Nature,377, 290 (1995).Google Scholar
  5. 5.
    K. N. P. Kumar, K. Keizer, and A. J. Burggraf,J. Mat. Sci. Lett.,13, 59 (1994).Google Scholar
  6. 6.
    F. F. Fan, H. Y. Liu, and A. J. Bard,J. Phys. Chem.,89, 4418 (1985).CrossRefGoogle Scholar
  7. 7.
    G. E. Badini, K. T. V. Grattan, A. C. C. Tseung, and A. W. Palmer,Optical Fiber Technol.,2, 378 (1996).CrossRefGoogle Scholar
  8. 8.
    E. Stathatos, D. Tsiourvas, and P. Lianos,Colloids and Surfaces A,149, 49 (1999).CrossRefGoogle Scholar
  9. 9.
    H. Lin, H. Kozuka, and T. Yoko,Thin Solid Films,315, 111 (1998).CrossRefGoogle Scholar
  10. 10.
    P. Christopolou, D. Davazoglou, C. Trapalis, and G. Kordas,Thin Solid Films,323, 188 (1998).CrossRefGoogle Scholar
  11. 11.
    P. Murugavel, M. Kalaiselvam, A. R. Raju, and C. N. R. Rao,J. Mater. Chem.,7, 1433 (1997).CrossRefGoogle Scholar
  12. 12.
    D. Guerin and S. I. Shah,J. Vac. Sci. Technol. A,15, 712 (1997).CrossRefGoogle Scholar
  13. 13.
    M. Georgson, A. Roos, and C. G. Ribbing,J. Vac. Sci. Technol. A,9, 2191 (1991).CrossRefGoogle Scholar
  14. 14.
    K. N. Rao and S. Mohan,J. Vac. Sci. Technol. A,8, 3260 (1990).CrossRefGoogle Scholar
  15. 15.
    Y. H. Lee, K. K. Chan, and M. J. Brady,J. Vac. Sci. Technol. A,13, 596 (1995).CrossRefGoogle Scholar
  16. 16.
    J. Aarik, A. Aidla, and T. Vustare,Phil. Mat. Lett.,73, 115 (1996).CrossRefGoogle Scholar
  17. 17.
    J. Aarik, A. Aidla, V. Sammelseg, and T. Uustare,J. Cryst. Growth,181, 259 (1997).CrossRefGoogle Scholar
  18. 18.
    Y. Gao, Y. Liang, and S. A. Chambers,Surf. Sci.,365, 638 (1996).CrossRefGoogle Scholar
  19. 19.
    M. Tan, G. Wang, and L. Zhang,J. Appl. Phys.,80, 1186 (1996).CrossRefGoogle Scholar
  20. 20.
    D. H. Reneker and I. Chun,Nanotechnology,7, 216 (1996).CrossRefGoogle Scholar
  21. 21.
    B. Ding, H. Y. Kim, S. C. Lee, D. R. Lee, and K. J. Choi,Fiber Polym.,3, 73 (2002).CrossRefGoogle Scholar
  22. 22.
    C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, and S. J. Park,Mater. Lett.,57, 1579 (2003).CrossRefGoogle Scholar
  23. 23.
    K. M. S. Khalil and M. I. Zaki,Powder Technology,92, 233 (1997).CrossRefGoogle Scholar
  24. 24.
    B. Lantelme, M. Dumon, C. Mai, and J. P. Pascault,J. Non-Crystalline Solids,194, 63 (1996).CrossRefGoogle Scholar
  25. 25.
    S. R. Kumar, C. Suresh, A. K. Vasudevan, N. R. Suja, P. Mukundan, and K. G. K. Warrier,Mater. Lett.,38, 161 (1999).CrossRefGoogle Scholar
  26. 26.
    G. L. Brown, D. F. Warner, and J. H. Byon,European Patent, 0004966 (1979).Google Scholar
  27. 27.
    A. Fradet and E. Marechal,Eur. Polym. J.,14, 761 (1978).CrossRefGoogle Scholar
  28. 28.
    T. H. Shah, J. I. Bhatty, G. A. Ganulen, and D. Dollimore,Polymer,25, 1333 (1984).CrossRefGoogle Scholar
  29. 29.
    M. Lambla, J. Druz, and A. Bouilloux,Polym. Eng. Sci.,27, 1221 (1987).CrossRefGoogle Scholar
  30. 30.
    P. Cassagnau, M. Bert, V. Verney,and A. Michel,Polym. Eng. Sci.,32, 998 (1992).CrossRefGoogle Scholar
  31. 31.
    J. Livage, M. Henry, and C. Sanchez,Progr. Solid State Chem.,18, 259 (1988).CrossRefGoogle Scholar
  32. 32.
    G. L. Wilkes,Mater. Res. Soc. Symp. Proc. U.S.A.,171, 15 (1990).Google Scholar
  33. 33.
    G. Busca, G. Ramis, J. M. Gallardo Amores, B. S. Escribano, and P. Piaggio,Chem. Soc. Faraday Trans.,90, 3181 (1994).CrossRefGoogle Scholar
  34. 34.
    M. Ocana, V. Fornes, J. V. Garcia Ramos, and C. J. Serna,J. Solid State Chem.,75, 364 (1988).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2004

Authors and Affiliations

  • Bin Ding
    • 2
    • 1
  • Chul Ki Kim
    • 1
  • Hak Yong Kim
    • 1
  • Min Kang Seo
    • 3
    • 1
  • Soo Jin Park
    • 3
    • 1
  1. 1.Department of Textile EngineeringChonbuk National UniversityJeonjuKorea
  2. 2.Department of Advanced Organic Materials EngineeringChonbuk National UniversityJeonjuKorea
  3. 3.Advanced Materials DivisionKorea Research Institute of Chemical TechnologyUysong, DaejeonKorea

Personalised recommendations