Skip to main content
Log in

Metrical geometry of the classical gauge fields

Метрическая георметрия классических калибровочных полей

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The usual geometric interpretation of the theory of the gauge fields is implemented and generalized, utilizing concepts of the metrical Riemannian geometry. A classic theorem—due to Riemann and Vermeil—allows us to give an elementary solution to the problem of the passage from the field strength (curvature) to the potential (connection).

Riassunto

Utilizzando concetti della geometria riemanniana, si dà un'interpretazione geometrica della teoria dei campi digauge, che è al contempo piú «microscopica» e piú generale di quella usuale. Un classico teorema di Riemann e Vermeil consente di risolvere su un piano elementare il problema del passaggio dall'intensità di campo (curvatura) al potenziale (connessione).

Резюме

Используя концепции метрической римановой геометрии, развивается и обобщается обычная геометрическая интерпретация теории калибровочных полей. Классическая теорема, предложенная Риманом и Вермейлом, позволяет получить элементарное решение проблемы перехода от интенсивности поля (кривизны) к потенциалу (связи).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See,e.g., a)L. D. Faddeev andA. A. Slavnov:Gauge Fields: Introduction to Quantum Theory (Reading, Mass., 1980), Chapt. 1, and the literature quoted on p. 219–220;b)T. Eguchi, P. B. Gilkey andA. J. Hanson:Phys. Rep.,66, 213 (1980).

  2. M. Brignoli andA. Loinger:Nuovo Cimento A,80, 477 (1984), and the literature quoted therein. (The notations of this work are not quite identical with those of the present paper.)

    Article  MathSciNet  ADS  Google Scholar 

  3. P. G. Bergmann:Introduction to the Theory of Relativity (Englewood Cliffs, N. J., 1960), p. 168.

  4. M. A. Mostow andS. Shnider:Commun. Math. Phys.,90, 417 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. B. Riemann:Über die Hypothesen, welche der Geometrie zu Grunde liegen (Neu herausgegeben und erläutert von H. Weyl, Dritte Auflage, 1923), p. 11, 12 and 27–34, in the volumeDas Kontinuum und andere Monographien (New York, N. Y., without indication of the year).

  6. H. Vermeil:Math. Annalen,74, 289 (1918). See alsoW. Pauli:Teoria della Relatività (Torino, 1958), Chapt. 2, Sect. 17.

    Article  MathSciNet  Google Scholar 

  7. L. P. Eisenhart:Non-Riemannian Geometry (New York, N. Y., 1927), p. 29. See alsoA. Einstein:The Meaning of Relativity, 5th Edition (Princeton, N. J., 1955), p. 148.

  8. seeW. Pauli:Teoria della Relatività (Torino, 1958), Chapt. 8, Sect. 66, andP. G. Bergmann:Introduction to the Theory of Relativity (Englewood Cliffs, N. J., 1960), Chapt. 17. In 1953,Pauli sketched, in a unpublished note, a suggestive generalization of Kaluza-Klein theory, inspired by an article ofA. Pais (Physica (Utrecht),19, 869 (1953)). Pauli's «theory of isospin» was expounded byP. Gulmanelli in a series of seminars held at the Physical Institute of the University of Milan in 1954. b) For recent generalizations of Kaluza-Klein theory, see,e.g., i)M. J. Duff andC. N. Pope:Kaluza-Klein Supergravity and the Seven-Sphere, inSupersymmetry and Supergravity '82, edited byS. Ferrara et al. (Singapore, 1983); ii)P. van Nieuwenhuizen:An Introduction to Simple Supergravity and the Kaluza-Klein Program, inProceedings of the 1983 Les Houches Summer School, edited byB. F. DeWitt et al. (Amsterdam, 1983); iii)P. van Nieuwenhuizen:Supergravity and the Kaluza-Klein Program, inGeneral Relativity and Gravitation, edited byB. Bertotti et al. (Dordrecht, 1984).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loinger, A. Metrical geometry of the classical gauge fields. Nuov Cim A 86, 259–271 (1985). https://doi.org/10.1007/BF02902551

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02902551

PACS

Navigation