Skip to main content
Log in

Finite-temperature scalar pregeometry

Скалярная прегеометрия при конечной температуре

  • Published:
Il Nuovo Cimento A (1971-1996)

Summary

We study the temperature corrections to the induced Newton constant. We obtain the Einstein action from an effective action of matter at finite temperature by means of the heat kernel expansion method. We find that the induced gravitational constant decreases as the temperature becomes higher. In the second part of the paper we investigate the consequences of this behaviour on the black-hole thermodynamics. We deduce the existence of a minimum mass and entropy corresponding to the maximum allowed temperature for the black hole.

Riassunto

Si studiano le correzioni di temperatura alla costante di Newton indotta. Si ottiene l'azione di Einstein da un'azione effettiva di materia, a temperatura finita, per mezzo dello sviluppo asintotico del nucleo del calore. Si trova che la costante gravitazionale indotta decreasce al crescere della temperatura. Nella seconda parte del lavoro si studiano le conseguenze di questo comportamento sulla termodinamica del buco nero. Si deduce l'esistenza di una massa ed entropia minime in corrispondenza della massima temperatura permessa per il buco nero.

Резюме

Мы исследуем температурные поправки, к индуцированной постоянной Ньютона. Мы получаем действие ёинштейна из эффективного действия вещества при конечной температуре с помощью асимптотического разложения теплового ядра. Мы находим, что индуцированная гравитационная постоянная уменьшается с увеличением температуры. Во второй части работы мы исследуем следствия этого поведения на термодинамике черных дыр. Мы выводим существование минимальных массы и энтропии, соответствующих максимально возможной температуре для черной дыры.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References 0259 0225 V 2

  1. C. J. Isham:Quantum Gravity: an Overview, inQuantum Gravity 2.A Second Oxford Symposium, edited byC. J. Isham, R Penrose andD. W. Sciama (Oxford, 1981).

  2. A. D. Sakharov:Sov. Phys. Dokl. 12, 1040 (1968).

    ADS  Google Scholar 

  3. T. Matsuki:Prog. Theor. Phys.,59, 235 (1978);K. Akama, Y. Chikashige, andT. Matsuki:Prog. Theor. Phys.,60, 868 (1978);K. Akama:Prog. Theor. Phys.,60, 1900 (1978);P. Minkowski:Phys. Lett. B,71, 419 (1977);L. Smolin:Nucl. Phys. B,160, 253 (1979);A. Zee:Phys. Rev. Lett.,42, 417 (1979);Phys. Rev. D,23, 858 (1981);S. L. Adler:Phys. Rev. Lett.,44, 1567 (1980);Phys. Lett B,95, 241 (1980);D. Amati andG. Veneziano:Phys. Lett. B,105, 358 (1981);Nucl. Phys. B,204, 451 (1982);A. Aurilia andM. Martellini:A model for quantum gravity: an effective approach to Einstein theory. Alberta-Thy-33-81, preprint.

    Article  ADS  Google Scholar 

  4. A. S. Adler:Rev. Mod. Phys.,54, 729 (1982).

    Article  ADS  Google Scholar 

  5. B. Hasslacher andE. Mottola:Phys. Lett. B,95, 237 (1980).

    Article  ADS  Google Scholar 

  6. G. Denardo andE. Spallucci:Nuovo Cimento A,69, 151 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Dolan andR. Jackiw:Phys. Rev. D,9, 3320 (1974);S. Weinberg:Phys. Rev. D,9, 3357 (1974);C. Bernard:Phys. Rev. D,9, 3308 (1974).

    Article  ADS  Google Scholar 

  8. V. de Alfaro, S. Fubini andG. Furlan:On the functional formulation of quantum field theory, Ref. Th. 3426-CERN preprint (1982).

  9. J. Schwinger:Phys. Rev.,82, 664 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  10. G. W. Gibbons andS. W. Hawking:Phys. Rev. D,15, 2752 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. De Witt:Phys. Rep. C,19, 295 (1975).

    Article  ADS  Google Scholar 

  12. J. S. Dowker andG. Kennedy:J. Phys. A,11, 895 (1978);J. S. Dowker andR. Critchley:Phys. Rev. D,15, 1484 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Sandage:Observatory,88, 91 (1968).

    ADS  Google Scholar 

  14. D. J. Toms:Phys. Rev. D,21, 2805 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. D. Linde:Phys. Lett B,93, 394 (1980).

    Article  ADS  Google Scholar 

  16. S. W. Hawking:Commun. Math. Phys.,43, 199 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  17. An extensive discussion about particle creation by black holes is given in the book byN. D. Birrell andP. C. W. Davies Quantum Fields in Curved Spacetime (London, 1982).

  18. P. C. W. Davies:Phys. Lett. B,101, 399 (1981).

    Article  ADS  Google Scholar 

  19. P. Hajicek andW. Israel:Phys. Lett. A,80, 9 (1980);W. A. Hiscock:Phys. Rev. D,23, 2813, 2823 (1981);R. Balbinot andR. Bergamini:Nuovo Cimento B,68, 104 (1982).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denardo, G., Spallucci, E. Finite-temperature scalar pregeometry. Nuov Cim A 74, 450–460 (1983). https://doi.org/10.1007/BF02902538

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02902538

PACS. 04.60

Navigation