Skip to main content
Log in

Unified gauge model with a nonlinear chiral hadron lagrangian

Единая калибровочная модель с нелинейным киральным адронным Лагранжианом

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

A chiral unified gauge model based upon a phenomenological chiralSU 4×SU 4 meson-baryon Lagrangian is constructed for the gauge groupSU 2,L×U 1. The obtained effective weak-interaction Lagrangian has the usual current ¢ current structure where the charged weak current is of the Cabibbo type and the neutral current satisfies the condition ΔS=0 of the GIM scheme. A generalization of theSU 3 ×SU 3 symmetry-breaking scheme of Oakes yields mass formulae for theSU 4 hadron multiplets.

Riassunto

Si costruisce un modello di gauge unificato chirale basato su un lagrangiano fenomenologico chiraleSU 4 ×SU 4 mesone-barione per il gruppo di gaugeSU 2,L ×U 1. Il lagrangiano effettivo d’interazione debole che si ottiene ha l’usuale struttura corrente × corrente in cui la corrente debole carica è del tipo di Cabibbo e la corrente neutra soddisfa la condizione ΔS=0 dello schema GIM. Una generalizzazione dello schema di violazione di simmetriaSU 3 ×SU 3 di Oakes dà come risultato formule di massa per i multipletti adronici diSU 4.

Реэюме

Для калибровочной группыSU 2,L×SU 1 конструируется единая киральная калибровочная модель, основанная на феноменологическом киральном «вSU 4×SU 4меэон-барионном Лагранжиане. Полученный зффективный Лагранжиан слабых вэаимодействий имеет обычную « ток ® токовую » структуру, где эаряженный слабый ток является током типа Кабиббо, а нейтральный ток удовлетворяет условию ΔS=0 для01М-схемы. Обобшение схемы Оакса для нарущенияSU 3×SU 4 симметрии дает массовые формулы дляSU 4 адронных мультиплетов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For excellent reviews onSU 3 ×SU 3, seeE. Reya:Rev. Mod. Phys.,46, 545 (1974);H. Pagels:Phys. Rep.,16, 221 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Inose:Prog. Theor. Phys.,58, 907 (1977);R. Dutt andS. N. Sinha:Phys. Lett. B,70, 103 (1977);R. J. Oakes andP. Sorba: Fermilab Report 77/78, THY (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Z. Maki, T. Maskawa andI. Umemura:Prog. Theor. Phys.,47, 1682 (1972);P. Dittner, S. Eliezer andT. K. Kubo:Phys. Rev. Lett.,30, 1274 (1973);S. C. Prasad:Phys. Rev. D,9, 1017 (1974);D. A. Dicus andV. S. Mathur:Phys. Rev. D,9, 1003 (1974).

    Article  ADS  Google Scholar 

  4. S. L. Glashow, J. Iliopoulos andL. Maiani:Phys. Rev. D,2, 1285 (1970).

    Article  ADS  Google Scholar 

  5. S. Weinberg:Phys. Rev. Lett.,18, 188 (1967).

    Article  ADS  Google Scholar 

  6. S. Coleman, J. Wess andB. Zumino:Phys. Rev.,177, 2239 (1969);C. G. Callan jr.,S. Coleman, J. Wess andB. Zumino:Phys. Rev.,177, 2247 (1969).

    Article  ADS  Google Scholar 

  7. D. V. Volkov:Part. Nucl.,4, 3 (1973).

    Google Scholar 

  8. M. K. Volkov andV. N. Pervushin:Usp. Fiz. Nauk,120, 363 (1976);Essentially Nonlinear Quantum Theories, Dynamical Symmetries and Meson Physics (Moscow, 1978) (in Russian);M. K. Volkov:Part. Nucl.,10, 693 (1979).

    Article  Google Scholar 

  9. M. K. Volkov andD. Ebert:Yad. Fiz.,29, 523 (1979).

    Google Scholar 

  10. G. Ecker andJ. Honerkamp:Nucl. Phys. B,62, 509 (1973).

    Article  ADS  Google Scholar 

  11. S. Weinberg:Phys. Rev. Lett.,19, 1264 (1967);A. Salam:Elementary Particle Physics, edited byN. Svartholm (Stockholm, 1968), p. 367.

    Article  ADS  Google Scholar 

  12. M. Gell-Mann, R. J. Oakes andB. Renner:Phys. Rev.,175, 2195 (1968);R. J. Oakes:Phys. Lett. B,29, 683 (1969).

    Article  ADS  Google Scholar 

  13. M. Kobayashi, M. Nakagawa andH. Nitto:Prog. Theor. Phys.,47, 982 (1972).

    Article  ADS  Google Scholar 

  14. Strictly speaking, the groupG W must be embedded into the groupU 4 ×U 4 since the generatorŷ/2 contains the unit matrix. The problem of embedding more general gauge groupsG W into the global groupU N ×U N has been discussed byWeinberg (14).

    Article  ADS  Google Scholar 

  15. S. Weinberg:Phys. Rev. D,13, 974 (1976).

    Article  ADS  Google Scholar 

  16. B. M. Zubnik andE. A. Ivanov:Yad. Fiz.,17, 582 (1973).

    Google Scholar 

  17. Ref. (16) contains also a discussion of the additional electromagnetic-mass corrections.

  18. D. Ebert andM. K. Volkov: JINR-preprint E2-12456, Dubna (1979).

  19. S. L. Adler andR. F. Dashen:Current Algebras (New York, N. Y., and Amsterdam, 1968).

  20. A. Cronin:Phys. Rev.,161, 1483 (1967).

    Article  ADS  Google Scholar 

  21. M. Singer:Phys. Rev. D,16, 2304 (1977).

    Article  ADS  Google Scholar 

  22. M. K. Gaillard, B. W. Lee andJ. L. Rosner:Rev. Mod. Phys.,47, 277 (1975);H. Schopper:Erice Lectures, DESY Report (1977).

    Article  ADS  Google Scholar 

  23. M. B. Einhorn andC. Quigg:Phys. Rev. D,12, 2015 (1975).

    Article  ADS  Google Scholar 

  24. M. K. Gaillard andB. W. Lee:Phys. Rev. D,10, 897 (1974);A. I. Vainstein, V. I. Sacharov andM. A. Shifman:Ž. Ėksp. Teor. Fiz.,72, 1274 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, D. Unified gauge model with a nonlinear chiral hadron lagrangian. Nuov Cim A 54, 399–412 (1979). https://doi.org/10.1007/BF02899847

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899847

Navigation