Skip to main content
Log in

On a one-particle in the continuum approach for the photoreaction cross-sections

  • Published:
Il Nuovo Cimento A (1965-1970)

An Erratum to this article was published on 01 January 1980

Summary

A formalism for calculating the photonuclear reaction cross-sections has been developed by extending a natural boundary condition method employed so far for the accurate description of the nucleon-induced reactions from a definite nuclear model. The comparison of the present approach with some coupled-channel-type methods for the one-particle continuum treatment is also discussed.

Riassunto

È stato sviluppato un formalismo per il calcolo delle sezioni d’urto di reazione fotonucleare; partendo dal metodo della condizione al contorno naturale, fino ad ora impiegato sulla base di un prefissato modello nucleare per la descrizione accurata delle reazioni indotte da nucleoni. Il presente approccio è confrontato con alcuni metodi di canali accoppiati per il trattamento di una particella nel continuo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Philpott:Proceedings of the International Symposium on Nuclear Collisions and Their Microscopic Descriptions (BLED, September 1977),Fizika (Suppl. 3), Vol.9 (1977), p. 21.

    Google Scholar 

  2. S. S. Ahmad, R. F. Barrett andB. A. Robinson:Nucl. Phys. A,257, 378 (1976).

    Article  ADS  Google Scholar 

  3. S. S. Ahmad, R. F. Barrett andB. A. Robinson:Nucl. Phys. A,270, 1 (1976).

    Article  ADS  Google Scholar 

  4. R. F. Barrett andB. A. Robson:J. Phys. B,12, 105 (1979).

    Article  ADS  Google Scholar 

  5. S. S. Ahmad:J. Phys. G,4, 1751 (1978).

    Article  ADS  Google Scholar 

  6. A. Bohr andB. R. Mottelson:Dan. Mat. Fys. Medd.,27, No. 16 (1953);T. Tamura:Rev. Mod. Phys.,37, 679 (1965).

  7. B. Buck andA. D. Hill:Nucl. Phys. A,95, 271 (1967).

    Article  ADS  Google Scholar 

  8. J. Birkholz:Nucl. Phys. A,189, 385 (1972).

    Article  ADS  Google Scholar 

  9. M. Marangoni, P. L. Ottaviani andA. M. Surius:Nucl. Phys. A,277, 239 (1977).

    Article  ADS  Google Scholar 

  10. P. P. Delsanto, A. Pompei andP. Quarati:J. Phys. G,3, 1133 (1977).

    Article  ADS  Google Scholar 

  11. M. Micklinghoff andB. Castel:Ann. Phys. (N. Y.),144, 452 (1978).

    Article  ADS  MATH  Google Scholar 

  12. A. M. Lane andD. Robson:Phys. Rev.,151, 774 (1966);185, 1403 (1969).

    Article  ADS  Google Scholar 

  13. A. deShalit andH. Feshbach:Theoretical Nuclear Physics, Vol.1, chap. IV–VI (New York, N. Y., 1974).

  14. M. Marangoni andA. M. Sarius:Nucl. Phys. A,132, 649 (1969).

    Article  ADS  Google Scholar 

  15. S. Ramavataram, C. L. Rao andK. Ramavataram:Nucl. Phys. A,226, 173 (1974).

    Article  ADS  Google Scholar 

  16. W. Fritsch, R. Lipperheide andU. Wille:Nucl. Phys. A,241, 79 (1975).

    Article  ADS  Google Scholar 

  17. C. Bloch:Nucl. Phys.,4, 503 (1957).

    Article  MATH  Google Scholar 

  18. It should be remarked here that the present form appears as the result of considering the orthonormal basis states within the internal region. This in turn implies that the single-particle statesϕ i(r A)are orthogonal to the states of theA-1 particles constituting the target. This assertion holds, however, so long as all the single-particle wave functions in theA-particle system are treated on equal footing. In case, for example, the target wave function results from the Slater determinant of theA-1 single-particle wave functions in the Hartree-Fock basis andϕ i(r A)results from the Saxon-Woods or some other basis, the basis states become nonorthogonal. Consequently the closure relation used in the derivation of eq. (12) needs to be replaced by Σ |ξ i〉[N −1] ij ξ j|=1 with [N] ij =〈ξ i|ξ j〉 ≠δ ij. However, since the single-particle potential of eq. (5) may be assumed to simulate the Hartree-Fock potential to a certain extent (17), we shall deal throughout with the orthonormal basis sets.

    Article  ADS  Google Scholar 

  19. D. Robson andA. M. Lane:Phys. Rev.,161, 982 (1967).

    Article  ADS  Google Scholar 

  20. A. Vitturi andF. Zardi:Riv. Nuovo Cimento,5, 648 (1975).

    Article  MATH  Google Scholar 

  21. S. S. Ahmad andP. Boccaccio:Lett. Nuovo Cimento,23, 316 (1978).

    Article  Google Scholar 

  22. S. S. Ahmad: Ph. D. Thesis, Australian National University, Canberra, Chapt. 6 (1976), unpublished.

  23. A. M. Lane andR. G. Thomas:Rev. Mod. Phys.,30, 257 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. E. Purcell: Technical Report No. 1, Physics Department, Florida State University, Tallhassee (1969), unpublished.

  25. J. L. Adams: Ph. D. Thesis, Florida State University, Tallahassee (1967), unpublished.

    Google Scholar 

  26. R. F. Barrett andP. P. Delsanto:Phys. Rev. C,10, 101 (1974).

    Article  ADS  Google Scholar 

  27. J. M. Blatt andV. F. Weisskopf:Theoretical Nuclear Physics (New York, N. Y., 1960).

  28. R. F. Barrett, L. C. Biedenharn, M. Danos, P. P. Delsanto, W. Greiner andH. G. Wahsweiler:Rev. Mod. Phys.,45, 44 (1973).

    Article  ADS  Google Scholar 

  29. M. Micklinghoff:Z. Phys. A,289, 183 (1979).

    Article  ADS  Google Scholar 

  30. M. Micklinghoff:Nucl. Phys. A,295, 237 (1978).

    Article  ADS  MATH  Google Scholar 

  31. In addition, the random phase approximation (RPA) theory has also been extended to treat the continuum (e.g.,S. Shlomo andG. Bertsch:Nucl. Phys. A,243, 507 (1975)) by employing an expansion of the free particle propagator in terms of the regular and irregular solutions of the Hartree-Fock Hamiltonian corresponding to each partial wave. Since this approach differs completely from the techniques involved in the previously described treatments, we shall not discuss it further here. We are thankful to Prof.Bortignon for pointing out the method of Shlomo and Bertsch and some stimulating discussions in this respect which will be communicated elsewhere.

    Article  ADS  Google Scholar 

  32. These calculations were carried out by the BD method together with a modification due toDelsanto andQuarati (39) for eliminating the spuriousitiesderiving from the centre-of-mass motion.

  33. P. P. Delsanto andP. Quarati:J. Phys. G,2, L161 (1976).

    Google Scholar 

  34. R. J. Philpott:Nucl. Phys. A,289, 109 (1977).

    Article  ADS  Google Scholar 

  35. R. J. Philpott, D. Mukhopadhyay andJ. E. Purcell:Nucl. Phys. A,294, 6 (1978).

    Article  ADS  Google Scholar 

  36. R. G. Newton:Scattering Theory of Waves and Particles (New York, N. Y., 1966).

  37. B. A. Robson andD. Robson:Phys. Lett. B,25, 504 (1967).

    Article  ADS  Google Scholar 

  38. A. Vitturi andF. Zardi:Nuovo Cimento A,21, 723 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Work supported in part by INFN under the contract No. 720: 6/10/78.

An erratum to this article is available at http://dx.doi.org/10.1007/BF02899969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, S.S. On a one-particle in the continuum approach for the photoreaction cross-sections. Nuov Cim A 54, 129–142 (1979). https://doi.org/10.1007/BF02899783

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899783

Navigation