Skip to main content
Log in

In vitro differentiation of the human osteosarcoma cell lines, HOS and KHOS

  • Original Articles
  • Published:
Virchows Archiv B

Summary

The osteogenic potential of the two human osteosarcoma cell lines HOS and KHOS; a cell line produced by the transformation of the HOS cells by the Kirsten murine sarcoma virus, was studied in vitro. HOS cells cultured more than 2 weeks formed nodules composed of two morphologically distinct layers, an epithelial-like surface cell layer and a collagen-rich inner cell layer. Alkaline phosphatase (ALPase) activity occurred in the plasma membrane of the surface cell layer, and calcified substances developing along collagen fibers were detected in the collagen-rich inner cell layer. The calcified substances were further examined by analytical electron microscopy and were shown to be hydroxyapatite crystals. In contrast, there was neither ALPase nor the deposition of a calcified substance in the KHOS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alema S, Tato F, Boettiger D (1985) myc and src oncogenes have complementary effects on cell proliferation and expression of specific extracellular matrix components in definitive chondroblasts. Mol Cell Biol 5:538–544

    PubMed  CAS  Google Scholar 

  • Allebach ES, Boettiger D, Pacifici M, Adams SL (1985) Control of types I and collagen and fibronectin gene expression in chondrocytes delineated by viral transformation. Mol Cell Biol 5:1002–1008

    PubMed  CAS  Google Scholar 

  • Anderson HC (1985) Matrix vesicle calcification: Review and update. In: Peck WA (ed) Bone and mineral research, vol 3. Elsevier Science Publishers, Amsterdam, pp 109–149

    Google Scholar 

  • Bar-Sagi D, Feramisco JR (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblast by ras proteins. Science 233:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Bhargava U, Bar-Lev M, Bellows CG, Aubin JE (1988) Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone 9:155–163

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1978) Matrix vesicle formation in cartilage of scorbutic guinea pigs: Electron microscope study of serial sections. Metab Bone Dis Relat Res 1:205–212

    Article  Google Scholar 

  • Bonucci E, Silverstrini G (1984) Electron miceoscope investigation on the origin of matrix vesicles in bone. In: Cohn DV, Potts JT Jr, Fujita T (eds) Endocrine control of bone and calcium metabolism, vol 8B. Excerpta Medica, Amsterdam, pp 414–417

    Google Scholar 

  • Boyan BD, Schwartz Z, Bonewald LF, Swain LD (1989) Localization of l,25-(OH72D3-responsive alkaline phosphatase in osteoblast-like cells (ROS 17/2.8, MG 63, and MC3T3) and growth cartilage cells in culture. J Biol Chem 264:11879–11886

    PubMed  CAS  Google Scholar 

  • Burstone MS (1958) Histochemical comparison of naphthol ASphosphate for the demonstration of phosphatases. J Natl Cancer Inst 20:601–615

    PubMed  CAS  Google Scholar 

  • Clemens TL, Garrett KP, Zhou XY, Pike JW, Harssler MR, Dempster DW (1988) Immunocytochemical localization of the 1,25-dihydroxyvitamin D3 receptor in target cells. Endocrinology 122:1224–1230

    PubMed  CAS  Google Scholar 

  • Colletta G, Pinto A, Di Fiore PP, Fusco AF, Ferrentino M, Avvedimento VE, Tsuchida N, Vecchio G (1983) Dissociation between transformed and differentiated phenotype in rat thyroid epithelial cells after transformation with a temperature-sensitive mutant of the Kirsten murine sarcoma virus. Mol Cell Biol 11:2099–2109

    Google Scholar 

  • Dahl LK (1952) A simple and sensitive histochemical method for calcium. Proc Soc Exp Biol Med 80:474–479

    PubMed  CAS  Google Scholar 

  • Falcone G, Boettiger D, Alema S, Tato F (1984) Role of cell division in differentiation of myoblasts infected with a temperaturesensitive mutant of Rous sarcoma virus. EMBO J 3:1327–1331

    PubMed  CAS  Google Scholar 

  • Franceschi RT, James WM, Zerlauth G (1985) la, 25-dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line. J Cell Physiol 123:401–409

    Article  PubMed  CAS  Google Scholar 

  • Franceschi RT, Linson CJ, Peter TC, Romano PR (1987) Regulation of cellular adhesion and fibronectin synthesis by 1α, 25-dihydroxyvitamin D3. J Biol Chem 262:4165–4171

    PubMed  CAS  Google Scholar 

  • Franceschi RT, Romano PR, Park KY (1988) Regulation of type I collagen synthesis by 1,25-dihydroxyvitamin D3 in human osteosarcoma cells. J Biol Chem 263:18938–18945

    PubMed  CAS  Google Scholar 

  • Fusco A, Pinto A, Tramontano D, Tajana G, Vecchio G, Tsuchida N (1983) Block in the expression of differentiation markers of rat thyroid cells by transformation with Kirsten murine sarcoma virus. Cancer Res 42:618–626

    Google Scholar 

  • Hirai G (1959) A contribution to the ultrastructure of the dental enamel by electron microscopy and electron diffraction. Okajima Fol Anat Jap 34:125–157

    Google Scholar 

  • Kirsten WH, Mayer LA (1967) Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst 39:311–335

    CAS  PubMed  Google Scholar 

  • Lassar AB, Thayer MJ, Overell RW, Weintraub H (1989) Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1. Cell 56:659–667

    Article  Google Scholar 

  • Lee WR, Laurie J, Townsend AL (1975) Fine structure of a radiation-induced osteogenic sarcoma. Cancer 36:1414–1425

    Article  PubMed  CAS  Google Scholar 

  • Liau G, Yamada Y, Crombrugghe BD (1985) Coodinate regulation of the levels of type III and type I collagen mRNA in most but not all mouse fibroblasts. J Biol Chem 260:531–536

    PubMed  CAS  Google Scholar 

  • Mayahara H, Hirano H, Saito T, Ogawa K (1967) The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (Orthophosphoric monoester phosphohydrolase). Histochemie 11:88–96

    Article  PubMed  CAS  Google Scholar 

  • McAllister RM, Gardner MB, Green AE, Nichols WW, Landing BH (1971) Cultivation in vitro of cells derived from a human osteosarcoma. Cancer 27:387–402

    Article  Google Scholar 

  • McSheehy PMJ, Chambers TJ (1986) Osteoblast-like cells in the presence of parathyroid hormone release soluble factor that stimulates osteoclastic bone resorption. Endocrinology 119:1645–1659

    Google Scholar 

  • McSheehy PMJ, Chambers TJ (1987) 1,25-dihydroxyvitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoblastic bone resorption. J Clin Invest 30:425–429

    Article  Google Scholar 

  • Muhrad A, Stein H, Bab A, Sela J (1978) Fine structure and enzymes of matrix vesicles in osteosarcoma: Possible occurrence of contractile proteins. Metab Bone Dis Relat Res 1:227–233

    Article  Google Scholar 

  • Mulkins MA, Manolagas SC, Deftos LJ, Sussman HH (1983) 1,25-dihydroxyvitamin D3 increases bone alkaline phosphatase isoenzyme levels in human osteogenic sarcoma cells. J Biol Chem 258:6219–6225

    PubMed  CAS  Google Scholar 

  • Murray E, Provvedini D, Curran D, Catherwood B, Sussman H, Manologas S (1987) Characterization of a human osteoblastic osteosarcoma cell line (SAOS-2) with high bone alkaline phosphatase activity. J Bone Miner Res 2:231–238

    Article  PubMed  CAS  Google Scholar 

  • Myrdal SE, Auersperg N (1986) An agents produced by virustransformed cells cause unregulated ruffling in untransformed cells. J Cell Biol 102:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Rhim JS, Cho HY, Huebner RJ (1975) Non-producer human cells induced by murine sarcoma virus. Int J Cancer 15:23–29

    Article  PubMed  CAS  Google Scholar 

  • Rodan SB, Fischer MK, Egan JJ, Epstein PM, Rodan GA (1984) The effect of dexamethasone on parathyroid hormone stimulation of adenylate cyclase in ROS 17/2.8 cells. Endocrinology 115:951–958

    Article  PubMed  CAS  Google Scholar 

  • Rodan SB, Imai Y, Thiede MA, Wesoloeski G, Thompson D, Bar-Shavit Z, Shull S, Mann K, Rodan GA (1987) Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res 47:4961–4966

    PubMed  CAS  Google Scholar 

  • Roseberry HH, Hastings AB, Morse JK (1931) X-ray analysis of bone and teeth. J Biol Chem 90:395–411

    CAS  Google Scholar 

  • Shiina S, Mizuhira V, Amakawa T, Futaesaku Y (1970) An analysis of the histochemical procedure for sodium ion detection. J Histochem Cytochem 18:644–649

    PubMed  CAS  Google Scholar 

  • Tenenbaum HC, Heershe NM (1982) Differentiation of osteoblasts formation of mineralized bone in vitro. Calcif Tissue Int 34:76–79

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida N, Ryder T, Ohtsubo E (1982) Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 217:937–939

    Article  PubMed  CAS  Google Scholar 

  • Watson P, Kang YH, Falk MC (1989) Cytochemical properties of osteoblast cell membrane domains. J Histochem Cytochem 37:1235–1246

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, T., Futaesaku, Y. & Tsuchida, N. In vitro differentiation of the human osteosarcoma cell lines, HOS and KHOS. Virchows Archiv B Cell Pathol 62, 199–206 (1992). https://doi.org/10.1007/BF02899683

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899683

Keywords

Navigation