Skip to main content
Log in

Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factorGmDREB of soybean (Glycine max)

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Under stress conditions such as drought, high-salinity and low-temperature, the transcription factor of DREB (dehydration responsive element binding proteins) improved efficiently stress resistance by regulating the expression of its downstream genes with various environmental stress resistance in plants.GmDREB gene (GenBank Accession No. AF514908) encoding a stress-inducible transcription factor was cloned by screening a cDNA library ofGlycine max cv. Jinong 27 with yeast one-hybrid method.GmDREB gene was 910 bp in length and encoded 174 amino acids containing a conserved AP2/EREBP DNA-binding domain of 58 amino acids. Two conserved functional amino acids, valine and glutamic acid, were located on the 14th and the 19th amino acid residues in the conserved structural domain. An alkaline amino acid region (KKR) related to a nuclear localization signal was at the N-terminal, while an acidic amino acid region (DDD) related totrans-activation was at the C-terminal. Plant expression vectors were constructed and transformed into wheat by bombardment. In total, 13 transgenic plants withUbi::GmDREB and 11 transgenic plants withrd29A::GmDREB were identified from 103 regeneration plants by molecular analysis. The drought and salt tolerances of T1 transgenic lines withUbi::GmDREB orrd29A::GmDREB were demonstrated to be improved as compared to wild type. The result also suggested that bothUbiquitin andrd29A promoters could effectively drive the expression of theGmDREB gene and enhance drought and salt tolerance of T1 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamaguchi-Shinozaki, K., Shinozaki, K., Characterization of the expression of a desiccation-responsiverd29A gene ofArabidopsis thaliana and analysis of its promoter in transgenic plants, Mol. Gen. Genet., 1993, 236: 331–340.

    Article  PubMed  CAS  Google Scholar 

  2. Bray, E. A., Plant responses to water deficit, Trends Plant Sci., 1997, 2: 48–54.

    Article  Google Scholar 

  3. Yamaguchi-Shinozaki, K., Shinozaki, K., Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol., 2000, 3: 217–223.

    PubMed  Google Scholar 

  4. Haake, V., Cook, D., Riechmann, J. L. et al., Transcription factor CBF4 is a regulator of drought adaptation inArabidopsis, Plant Physiol., 2002, 130: 639–648.

    Article  PubMed  CAS  Google Scholar 

  5. Xiong, L., Zhu, J. K., Regulation of abscisic acid biosynthesis, Plant Physiol., 2003, 133(1): 29–36.

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi-Shinozaki, K., Shinozaki, K., Seki, M., Regulatory network of gene expression in the drought and cold stress responses, Curr. Opin. Plant Biol., 2003, 6(5): 410–417.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, D., Duan, X., Wang, B. et al., Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice, Plant Physiol., 1996, 10: 249–257.

    Google Scholar 

  8. Guo, B. H., Zhang, Y. M., Li, H. J. et al., Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH), Acta Botanica Sinica, 2000, 42(3): 279–283.

    Google Scholar 

  9. Thomas, J. C., Sepahi, M., Arendall, B. et al., Enhancement of seed germination in high salinity by engineering mannitol expression inArabidopsis thaliana, Plant Cell Environ., 1995, 18: 801–810.

    Article  CAS  Google Scholar 

  10. Chen, W., Provart, N. J., Glazebrook, J. et al., Expression profile matrix ofArabidopsis transcription factor genes suggests their putative functions in response to environmental stresses, Plant Cell, 2002, 14: 559–574.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, Q., Zhao Nanning, Yamaguchi-Shinozaki, K. et al., Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance, Chinese Science Bulletin, 2000, 45(11): 970–975.

    Article  CAS  Google Scholar 

  12. Yamaguchi-Shinozaki, K., Shinozaki, K., A novel cis-acting element in anArabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress, Plant Cell, 1994, 6: 251–264.

    Article  PubMed  CAS  Google Scholar 

  13. Riechmann, J. L., Heard, J., Martin, G., et al.,Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science, 2000, 15; 209 (5499): 2105–2110.

    Article  Google Scholar 

  14. Kasuga. M., Miura, S., Shinozaki, K. et al., A combination of theArabidopsis DREB1A gene and stress-induciblerd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer, Plant Cell Physiol., 2004, 45(3): 346–350.

    Article  PubMed  CAS  Google Scholar 

  15. Iwasaki, W., Nagata, K., Hatanaka, H. et al., Solution structure of midkine, a new heparin-binding growth factor, The EMBO J., 1997, 16(23): 6936–6946.

    Article  CAS  Google Scholar 

  16. Hsieh, T. H., Lee, J. T., Yang, P. T. et al., Heterology expression of theArabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato, Plant Physiol., 2002, 129: 1086–1094.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, Q., Kasuga, M., Sakuma, Y., et al., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression inArabidopsis, Plant Cell, 1998, 10:1391–1406.

    Article  PubMed  CAS  Google Scholar 

  18. Kasuga, M., Liu, Q., Miura, S. et al., Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nat. Biotechnol., 1999, 17: 287–291.

    Article  PubMed  CAS  Google Scholar 

  19. Seki, M., Narusaka, M., Abe, H. et al., Monitoring the expression pattern of 1300Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray, Plant Cell, 2001, 13:61–72.

    Article  PubMed  CAS  Google Scholar 

  20. Pellegrineschi, A., Reynolds, M., Yamaguchi-Shinozaki, K. et al., Stress-induced expression in wheat of theArabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions, Genome, 2004, 47: 493–500.

    Article  PubMed  CAS  Google Scholar 

  21. Sakuma, Y., Liu, Q., Dubouzet, J. G. et al., DNA-binding specificity of the ERF/AP2 domain ofArabidopsis DREB transcription factors involved in dehydration and cold-inducible gene expression, Biochem. Biophys. Res. Commun., 2002, 290: 998–1009.

    Article  PubMed  CAS  Google Scholar 

  22. Dubouzet, J. G., Sakuma, Y., Ito, Y. et al.,OsDREB genes in rice,Oryza sativa L., encode transcription activators that function in drought, high-salt and cold-responsive gene expression, Plant J., 2003, 33: 751–763.

    Article  PubMed  CAS  Google Scholar 

  23. Shen, Y. G., Zhang, W. K., Liu, Q. et al., An EREBP/AP2-type protein intriticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress, Theor. Appl. Genet., 2003, 106: 923–930.

    PubMed  CAS  Google Scholar 

  24. Qin, F., Li, J., Zhang, G. Y. et al., Isolation and structural analysis of DRE-binding transcription factor from Maize (Zea mays L.), Acta Botanica Sinica, 2003, 45(3): 331 -339.

    CAS  Google Scholar 

  25. Zhou, J. M., Tang, X. Y., Martin, G. B., The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes, EMBO J., 1997, 16(11): 3207–3218.

    Article  PubMed  CAS  Google Scholar 

  26. Leubner-metzger, G., Petruzzelli, L., Waldvogel, R. et al., Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination, Plant Mol. Biol., 1998, 38: 785–795.

    Article  PubMed  CAS  Google Scholar 

  27. Sambrook, J. G., Russell, R., Umrania, Y., et al., Fugu orthologues of human major histocompatibility complex genes: a genome survey, Immunogenetics, 2002, 54 (6): 367–380.

    Article  PubMed  CAS  Google Scholar 

  28. Zheng, H. J., He, S. J., Some improvements of the biolistic transformation system forOryza, Chin. J. Biotechnol., 1994, 12(sup): 111–115.

    Google Scholar 

  29. Murray, M. G., Tompson, W. F., Rapid isolation of high molecular weight plant DNA, Nucleic Acid Res., 1980, 8: 4321–4325.

    Article  PubMed  CAS  Google Scholar 

  30. Al Hakimi, A., Monneveux P., Galiba, G., Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC fromT. polonicum intoT. durum, J. Genet. Breed, 1995, 49: 237–244.

    CAS  Google Scholar 

  31. Chen, Q. J., Niu, X. G., Chai, M. F., et al., Isolation of anArabidopsis gene encoding ins (1, 3, 4) P-3 5/6yinase-like protein and involved in plant response to abiotic stresses, Acta Botanica Sinica, 2003, 45: 211–218.

    CAS  Google Scholar 

  32. Maruyama, K., Sakuma, Y., Kasuga, M. et al., Identification of cold-inducible downstream genes of theArabidopsis DREB1A/ CBF3 transcriptional factor using two microarray systems, Plant J., 2004, 38: 982–993.

    Article  PubMed  CAS  Google Scholar 

  33. Finnegan, L., McElroy, D., Transgene interaction: Plant fight back, Biotechnol., 1994, 12: 883–888.

    Article  Google Scholar 

  34. Srivastava, V., Anderson, O. D., Ow, D. W., Single-copy transgenic wheat generated through the resolution of complex integration patterns, Proc. Natl. Acad. Sci. USA, 1999, 99: 11117–11121.

    Article  Google Scholar 

  35. Matzke, A. J., Neuhuber, F., Park, Y. D. et al., Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes, Mol. Gen. Genet., 1994, 244(3): 219–229.

    Article  PubMed  CAS  Google Scholar 

  36. Vasil, V., Castillo, A. M., Fromm, M. E. et al., Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus, Biotechnol., 1992, 10: 667–674.

    Article  CAS  Google Scholar 

  37. Cheng, M., Fry, J. E., Pang, S. et al., Genetic transformation of wheat mediated byAgrobacterium tumefaciens, Plant Physiol., 1997, 115: 971–980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Xianguo or Ma Youzhi.

About this article

Cite this article

Shiqing, G., Huijun, X., Xianguo, C. et al. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factorGmDREB of soybean (Glycine max). Chin. Sci. Bull. 50, 2714–2723 (2005). https://doi.org/10.1007/BF02899641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899641

Keywords

Navigation