Chinese Science Bulletin

, Volume 50, Issue 23, pp 2714–2723 | Cite as

Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factorGmDREB of soybean (Glycine max)

  • Gao Shiqing
  • Xu Huijun
  • Cheng Xianguo
  • Chen Ming
  • Xu Zhaoshi
  • Li Liancheng
  • Ye Xingguo
  • Du Lipu
  • Hao Xiaoyan
  • Ma Youzhi
Articles

Abstract

Under stress conditions such as drought, high-salinity and low-temperature, the transcription factor of DREB (dehydration responsive element binding proteins) improved efficiently stress resistance by regulating the expression of its downstream genes with various environmental stress resistance in plants.GmDREB gene (GenBank Accession No. AF514908) encoding a stress-inducible transcription factor was cloned by screening a cDNA library ofGlycine max cv. Jinong 27 with yeast one-hybrid method.GmDREB gene was 910 bp in length and encoded 174 amino acids containing a conserved AP2/EREBP DNA-binding domain of 58 amino acids. Two conserved functional amino acids, valine and glutamic acid, were located on the 14th and the 19th amino acid residues in the conserved structural domain. An alkaline amino acid region (KKR) related to a nuclear localization signal was at the N-terminal, while an acidic amino acid region (DDD) related totrans-activation was at the C-terminal. Plant expression vectors were constructed and transformed into wheat by bombardment. In total, 13 transgenic plants withUbi::GmDREB and 11 transgenic plants withrd29A::GmDREB were identified from 103 regeneration plants by molecular analysis. The drought and salt tolerances of T1 transgenic lines withUbi::GmDREB orrd29A::GmDREB were demonstrated to be improved as compared to wild type. The result also suggested that bothUbiquitin andrd29A promoters could effectively drive the expression of theGmDREB gene and enhance drought and salt tolerance of T1 plants.

Keywords

GmDREB gene wheat salt tolerance drought tolerance 

References

  1. 1.
    Yamaguchi-Shinozaki, K., Shinozaki, K., Characterization of the expression of a desiccation-responsiverd29A gene ofArabidopsis thaliana and analysis of its promoter in transgenic plants, Mol. Gen. Genet., 1993, 236: 331–340.PubMedCrossRefGoogle Scholar
  2. 2.
    Bray, E. A., Plant responses to water deficit, Trends Plant Sci., 1997, 2: 48–54.CrossRefGoogle Scholar
  3. 3.
    Yamaguchi-Shinozaki, K., Shinozaki, K., Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol., 2000, 3: 217–223.PubMedGoogle Scholar
  4. 4.
    Haake, V., Cook, D., Riechmann, J. L. et al., Transcription factor CBF4 is a regulator of drought adaptation inArabidopsis, Plant Physiol., 2002, 130: 639–648.PubMedCrossRefGoogle Scholar
  5. 5.
    Xiong, L., Zhu, J. K., Regulation of abscisic acid biosynthesis, Plant Physiol., 2003, 133(1): 29–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamaguchi-Shinozaki, K., Shinozaki, K., Seki, M., Regulatory network of gene expression in the drought and cold stress responses, Curr. Opin. Plant Biol., 2003, 6(5): 410–417.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu, D., Duan, X., Wang, B. et al., Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice, Plant Physiol., 1996, 10: 249–257.Google Scholar
  8. 8.
    Guo, B. H., Zhang, Y. M., Li, H. J. et al., Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH), Acta Botanica Sinica, 2000, 42(3): 279–283.Google Scholar
  9. 9.
    Thomas, J. C., Sepahi, M., Arendall, B. et al., Enhancement of seed germination in high salinity by engineering mannitol expression inArabidopsis thaliana, Plant Cell Environ., 1995, 18: 801–810.CrossRefGoogle Scholar
  10. 10.
    Chen, W., Provart, N. J., Glazebrook, J. et al., Expression profile matrix ofArabidopsis transcription factor genes suggests their putative functions in response to environmental stresses, Plant Cell, 2002, 14: 559–574.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu, Q., Zhao Nanning, Yamaguchi-Shinozaki, K. et al., Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance, Chinese Science Bulletin, 2000, 45(11): 970–975.CrossRefGoogle Scholar
  12. 12.
    Yamaguchi-Shinozaki, K., Shinozaki, K., A novel cis-acting element in anArabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress, Plant Cell, 1994, 6: 251–264.PubMedCrossRefGoogle Scholar
  13. 13.
    Riechmann, J. L., Heard, J., Martin, G., et al.,Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science, 2000, 15; 209 (5499): 2105–2110.CrossRefGoogle Scholar
  14. 14.
    Kasuga. M., Miura, S., Shinozaki, K. et al., A combination of theArabidopsis DREB1A gene and stress-induciblerd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer, Plant Cell Physiol., 2004, 45(3): 346–350.PubMedCrossRefGoogle Scholar
  15. 15.
    Iwasaki, W., Nagata, K., Hatanaka, H. et al., Solution structure of midkine, a new heparin-binding growth factor, The EMBO J., 1997, 16(23): 6936–6946.CrossRefGoogle Scholar
  16. 16.
    Hsieh, T. H., Lee, J. T., Yang, P. T. et al., Heterology expression of theArabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato, Plant Physiol., 2002, 129: 1086–1094.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, Q., Kasuga, M., Sakuma, Y., et al., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression inArabidopsis, Plant Cell, 1998, 10:1391–1406.PubMedCrossRefGoogle Scholar
  18. 18.
    Kasuga, M., Liu, Q., Miura, S. et al., Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nat. Biotechnol., 1999, 17: 287–291.PubMedCrossRefGoogle Scholar
  19. 19.
    Seki, M., Narusaka, M., Abe, H. et al., Monitoring the expression pattern of 1300Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray, Plant Cell, 2001, 13:61–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Pellegrineschi, A., Reynolds, M., Yamaguchi-Shinozaki, K. et al., Stress-induced expression in wheat of theArabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions, Genome, 2004, 47: 493–500.PubMedCrossRefGoogle Scholar
  21. 21.
    Sakuma, Y., Liu, Q., Dubouzet, J. G. et al., DNA-binding specificity of the ERF/AP2 domain ofArabidopsis DREB transcription factors involved in dehydration and cold-inducible gene expression, Biochem. Biophys. Res. Commun., 2002, 290: 998–1009.PubMedCrossRefGoogle Scholar
  22. 22.
    Dubouzet, J. G., Sakuma, Y., Ito, Y. et al.,OsDREB genes in rice,Oryza sativa L., encode transcription activators that function in drought, high-salt and cold-responsive gene expression, Plant J., 2003, 33: 751–763.PubMedCrossRefGoogle Scholar
  23. 23.
    Shen, Y. G., Zhang, W. K., Liu, Q. et al., An EREBP/AP2-type protein intriticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress, Theor. Appl. Genet., 2003, 106: 923–930.PubMedGoogle Scholar
  24. 24.
    Qin, F., Li, J., Zhang, G. Y. et al., Isolation and structural analysis of DRE-binding transcription factor from Maize (Zea mays L.), Acta Botanica Sinica, 2003, 45(3): 331 -339.Google Scholar
  25. 25.
    Zhou, J. M., Tang, X. Y., Martin, G. B., The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes, EMBO J., 1997, 16(11): 3207–3218.PubMedCrossRefGoogle Scholar
  26. 26.
    Leubner-metzger, G., Petruzzelli, L., Waldvogel, R. et al., Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination, Plant Mol. Biol., 1998, 38: 785–795.PubMedCrossRefGoogle Scholar
  27. 27.
    Sambrook, J. G., Russell, R., Umrania, Y., et al., Fugu orthologues of human major histocompatibility complex genes: a genome survey, Immunogenetics, 2002, 54 (6): 367–380.PubMedCrossRefGoogle Scholar
  28. 28.
    Zheng, H. J., He, S. J., Some improvements of the biolistic transformation system forOryza, Chin. J. Biotechnol., 1994, 12(sup): 111–115.Google Scholar
  29. 29.
    Murray, M. G., Tompson, W. F., Rapid isolation of high molecular weight plant DNA, Nucleic Acid Res., 1980, 8: 4321–4325.PubMedCrossRefGoogle Scholar
  30. 30.
    Al Hakimi, A., Monneveux P., Galiba, G., Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC fromT. polonicum intoT. durum, J. Genet. Breed, 1995, 49: 237–244.Google Scholar
  31. 31.
    Chen, Q. J., Niu, X. G., Chai, M. F., et al., Isolation of anArabidopsis gene encoding ins (1, 3, 4) P-3 5/6yinase-like protein and involved in plant response to abiotic stresses, Acta Botanica Sinica, 2003, 45: 211–218.Google Scholar
  32. 32.
    Maruyama, K., Sakuma, Y., Kasuga, M. et al., Identification of cold-inducible downstream genes of theArabidopsis DREB1A/ CBF3 transcriptional factor using two microarray systems, Plant J., 2004, 38: 982–993.PubMedCrossRefGoogle Scholar
  33. 33.
    Finnegan, L., McElroy, D., Transgene interaction: Plant fight back, Biotechnol., 1994, 12: 883–888.CrossRefGoogle Scholar
  34. 34.
    Srivastava, V., Anderson, O. D., Ow, D. W., Single-copy transgenic wheat generated through the resolution of complex integration patterns, Proc. Natl. Acad. Sci. USA, 1999, 99: 11117–11121.CrossRefGoogle Scholar
  35. 35.
    Matzke, A. J., Neuhuber, F., Park, Y. D. et al., Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes, Mol. Gen. Genet., 1994, 244(3): 219–229.PubMedCrossRefGoogle Scholar
  36. 36.
    Vasil, V., Castillo, A. M., Fromm, M. E. et al., Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus, Biotechnol., 1992, 10: 667–674.CrossRefGoogle Scholar
  37. 37.
    Cheng, M., Fry, J. E., Pang, S. et al., Genetic transformation of wheat mediated byAgrobacterium tumefaciens, Plant Physiol., 1997, 115: 971–980.PubMedGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Gao Shiqing
    • 1
  • Xu Huijun
    • 1
  • Cheng Xianguo
    • 2
  • Chen Ming
    • 1
  • Xu Zhaoshi
    • 1
  • Li Liancheng
    • 1
  • Ye Xingguo
    • 1
  • Du Lipu
    • 1
  • Hao Xiaoyan
    • 1
  • Ma Youzhi
    • 1
  1. 1.Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture/Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  2. 2.Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Agricultaral Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations