Measures to evaluate heteroaromaticity and their limitations: Story of skeletally substituted benzenes

Abstract

Ab initio HF, MP2, CCSD(T) and hybrid density functional B3LYP calculations were performed on a series of skeletally mono- and di-substituted benzenes, (CH)5Z and (CH)4Z2, Z = C-, N, O+, Si-, P, S+, Ge-, As, Se+, BH-, NH+, AlH-, SiH, PH+, GaH-, GeH and AsH+. Various measures of aromaticity such as the bond length equalization, homodesmic equations, singlet-triplet energy difference (AE s-t), chemical hardness (η) and out-of-plane distortive tendency are critically analysed. The relative energy ordering in skeletally disubstituted benzenes displays trends that are inexplicable based on conventional wisdom. In general, the orthoisomer is found to be the least stable when the substituent is from the second row, whereas if the substituent is from the fourth row, the ortho-isomer is the most stable. Various qualitative arguments, including (a) lone pair-lone pair repulsion, (b) the sum of bond strengths in the twin Kekule forms, and (c) the rule of topological charge stabilization (TCS), are used to explain the observed relative energy trends. The rule of TCS in conjunction with the sum of bond strengths is found to predict the relative energy ordering reasonably well. The reactivity of this class of compounds is assessed based on their singlet-triplet energy differences, chemical hardness and the frequencies corresponding to out-of-plane skeletal distortions. These reactivity indices show less kinetic stability for the compounds with substituents from the fourth row and point to the fact that the thermodynamically most stable compounds need not be the least reactive ones. The ‡Es-t values indicate that the π-framework of benzene weakens upon skeletal substitutions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Minkin V, Simkin B and Glukhotsev M 1994Aromaticity and antiaromaticity: Electronic and structural aspects (New York: Wiley); Garratt P J 1986Aromaticity (New York: Wiley); Bergmann E D and Pullman B (eds) 1971Aromaticity, pseudo-aromaticity, anti-aromaticity. Jerusalem Symposium on Quantitative Chemistry and Biochemistry (Jerusalem: Israel Acad. Sci. Humanities) vol. 3; Badger G M 1969Aromatic character and aromaticity (Cambridge: University Press)

    Google Scholar 

  2. 2.

    Katritzky A R, Rees C W and Seriven E F V (eds) 1996Comprehensive heterocyclic chemistry (Oxford: Elsevier Science) vol. 2; Krygowski T M, Cyranski M K, Czarnocki Z, Hafelinger G and Katritzky A R 2000Tetrahedron 56 1783

    Google Scholar 

  3. 3.

    Schleyer P v R, Maerker C, Dransfeld A, Jiao H and Hommes N J R v E 1996J. Am. Chem. Soc. 118 6317

    Article  CAS  Google Scholar 

  4. 4.

    Cernusak I, Fowler P W and Steiner E 2000Mol. Phys. 98 945

    Article  CAS  Google Scholar 

  5. 5.

    Baldridge K K, Uzan U and Martin J M L 2000Organometallics 19 1477

    Article  CAS  Google Scholar 

  6. 6.

    Shaik S, Shurki A, Danovich D and Hiberty P C 2001Chem. Rev. 101 1501; Jug K, Hiberty P C and Shaik S 2001Chem. Rev. 101 1477; Sastry G N 2001Curr. Sci. 81 1288

    Article  CAS  Google Scholar 

  7. 7.

    Priyakumar U D and Sastry G N 2000J. Am. Chem. Soc. 122 11173; Priyakumar U D and Sastry G N 2002J. Org. Chem. 67 271; Dhevi D M, Priyakumar UD and Sastry GN 2003J. Org. Chem. 68 1168

    Article  CAS  Google Scholar 

  8. 8.

    Hoffmann M, Schleyer P v R and Regitz M 1999Eur. J. Org. Chem. 3291; Frison G, Sevin A, Avarvari N, Mathey F and Floch P L 1999J. Org. Chem. 64 5524; Doerksen R J and Thakkar A J 1999J. Phys. Chem. A103 2141; Dewar M J S and Holder A J 1989Heterocycles 28 1135; Baldridge K K and Gordon M S 1988J. Am. Chem. Soc. 110 4204

  9. 9.

    Jemmis E D and Kiran B 1996J. Org. Chem. 61 9006; Jemmis E D and Kiran B 1998Inorg. Chem. 37 2110; Kiran B, Phukan A K and Jemmis E D 2001Inorg. Chem. 40 3615.

    Article  CAS  Google Scholar 

  10. 10.

    Priyakumar U D, Dinadayalane T C and Sastry G N 2001Chem. Phys. Lett. 336 343; Priyakumar U D, Dinadayalane T C and Sastry G N 2001Chem. Phys. Lett. 337 361; Priyakumar U D, Dinadayalane T C and Sastry G N 2002New J. Chem. 26 347

    Article  CAS  Google Scholar 

  11. 11.

    Wakita K, Tokitoh N, Okazaki R, Takagi N and Nagase S 2000J. Am. Chem. Soc. 122 5648; Wakita K, Tokitoh N, Okazaki R and Nagase S 2000Angew. Chem., Int. Ed. Engl. 39 634; Wakita K, Tokitoh N, Okazaki R, Nagase S, Schleyer P v R and Jiao H 1999J. Am. Chem. Soc. 121 11336; Tokitoh N, Wakita K, Okazaki R, Nagase S, Schleyer P v R and Jiao H 1997J. Am. Chem. Soc. 119 6951

    Article  CAS  Google Scholar 

  12. 12.

    Priyakumar U D and Sastry G N 2002Organometallics 21 1493; Dhevi D M, Priyakumar U D and Sastry G N 2002J. Mol. Struct. (Theochem) 618 173

    Article  CAS  Google Scholar 

  13. 13.

    Priyakumar U D, Saravanan D and Sastry G N 2002Organometallics 21 4823

    Article  CAS  Google Scholar 

  14. 14.

    Schroder D, Schwarz H, Wulf M, Sievers H, Jutzi P and Reiher M 1999Angew. Chem., Int. Ed. 38 3513; Gimarc B M and Zhao M 1996Inorg. Chem. 35 3289; Nagase S and Ito K 1986Chem. Phys. Lett. 126 43; Zhao M and Gimarc B M 1996Inorg. Chem. 35 5378; Clabo D A Jr and Schaefer H F III 1986J. Chem. Phys. 84 1664; Sax A and Janoschek R 1986Angew. Chem., Int. Ed. Engl. 25 651; Warren D S, Gimarc B M and Zhao M 1994Inorg. Chem. 33 710; Warren D S and Gimarc B M 1992J. Am. Chem. Soc. 114 5378

    Article  CAS  Google Scholar 

  15. 15.

    Hehre W J, Radom L, Schleyer P v R and Pople J A 1986Ab initio molecular orbital theory (New York: Wiley)

    Google Scholar 

  16. 16.

    Koch W and Holthausen M C 2001A chemist’s guide to density functional theory (Weinheim: Wiley-VCH)

    Google Scholar 

  17. 17.

    NBO Version 3.1, Glendening E D, Reed A E, Carpenter J E and Weinhold F

  18. 18.

    Gaussian 98 2001 Revision A.1 1.2, Frisch M Jet al Gaussian, Inc., Pittsburgh PA

  19. 19.

    Bally T, Albrecht B, Matzinger S and Sastry G M 1997 Moplot 3.2, University of Fribourg, Fribourg, Switzerland

    Google Scholar 

  20. 20.

    Cotton F A and Wilkinson G 1998Advanced inorganic chemistry (New York: John Wiley); Jemmis E D and Srinivas G N 1996J. Am. Chem. Soc. 118 3738; Jemmis E D, Subramanian G and McKee M L 1996J. Phys. Chem. 100 7014; Gobbi A and Frenking G 1994J. Am. Chem. Soc. 116 9287; Jemmis E D, Srinivas G N, Leszczynski J, Kapp, Korkin A A and Schleyer P v R 1995J. Am. Chem. Soc. 117 11362

    Google Scholar 

  21. 21.

    Cheung Y-S, Wong C-K and Li W-K 1998J. Mol. Struct. (Theochem) 454 17; Li Z, Rogers D W, McLafferty F J, Mandziuk M and Podosenin A V 1999J. Phys. Chem. A103 426

    Article  CAS  Google Scholar 

  22. 22.

    Gimarc B M 1983J. Am. Chem. Soc. 105 1979

    Article  CAS  Google Scholar 

  23. 23.

    Ott J J and Gimarc B M 1986J. Am. Chem. Soc. 108 4303; Jemmis E D, Subramanian G and Radom L 1992J. Am. Chem. Soc. 114 1481; Jemmis E D, Subramanian G, Srivastava I H and Gadre S R 1994J. Phys. Chem. 98 6445

    Article  CAS  Google Scholar 

  24. 24.

    Hirsch A 1994The chemistry of the fullerenes (New York: Georg Thieme Verlag) pp 25–26; Schullman J M and Disch R L 1996J. Am. Chem. Soc. 118 8470; Sastry G N, Jemmis E D, Mehta G and Shah S R 1993J. Chem. Soc., Perkin Trans. 2 1867; Baldridge K K and Siegel J S 1992J. Am. Chem. Soc. 114 9583; Priyakumar U D and Sastry G N 2001J. Org. Chem. 66 6523

    Google Scholar 

  25. 25.

    Shurki A and Shaik S 1997Angew. Chem., Int. Ed. Engl. 36 2205; Hiberty P C, Danovich D, Shurki A and Shaik S 1995J. Am. Chem. Soc. 117 7760; Shaik S and Hiberty P C 1985J. Am. Chem. Soc. 107 3089; Hiberty P C, Shaik S, Ohanessian G and Lefour J-M 1986J. Org. Chem. 51 3908

    Article  CAS  Google Scholar 

  26. 26.

    Zhou Z, Parr R G and Garst J F 1988Tetrahedron Lett. 29 4843; Parr R G 1989J. Org. Chem. 54 1423; Pearson R G 1998Inorg. Chem. 27 734

    Article  CAS  Google Scholar 

  27. 27.

    Colombet L, Volatron F, Maitre P and Hiberty P C 1999J. Am. Chem. Soc. 121 4215

    Article  CAS  Google Scholar 

  28. 28.

    Katritzky A R, Karelson M and Malhotra N 1991Heterocycles 32 127

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to U. Deva Priyakumar or G. Narahari Sastry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Priyakumar, U.D., Sastry, G.N. Measures to evaluate heteroaromaticity and their limitations: Story of skeletally substituted benzenes. J Chem Sci 115, 49 (2003). https://doi.org/10.1007/BF02899319

Download citation

Keywords

  • Aromaticity
  • heteroaromaticity
  • skeletally substituted benzenes
  • theoretical calculations
  • DFT