Skip to main content
Log in

Lymphocyte mediated cell lysis

  • Review
  • Published:
Virchows Archiv B

Summary

Lymphocyte-mediated cell lysis represents an important immunologic effector mechanism involved in defense against viral infections, allograft rejection, and tumor surveillance. Moreover, regulatory T cell interactions within the immune system are based, at least in part, on molecular events related to this function. The multiplicity of effector cell populations that can mediate cytotoxicity, the cell/cell interaction determinants which they require for execution of their activities, and molecular events underlying the lytic process itself, as elucidated recently, are the subjects of the present review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leucocyte Typing I, Eds. Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF. Springer, New York 1980

  2. Leucocyte Typing II, Eds. Reinherz EL, Haynes B, Nadler LM, Bernstein I. Springer, New York 1986

  3. Leucocyte Typing III, Eds. McMichael AJ, Beverly PCL, Cobbold S, Crumpton MJ, Gilks W, Gotch FM, Hogg N, Horton M, Ling N, MacLennan ICM, Mason DY, Milstein C, Speigelhalter D, and Waldmann H. University Press, Oxford, 1987

  4. Reinherz EL, Schlossman SF (1980) The differentiation and function of human T lymphocytes. Cell 19:821

    Article  PubMed  CAS  Google Scholar 

  5. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333

    Article  PubMed  CAS  Google Scholar 

  6. Sukhatme VP, Sizer KC, Vollmer AC, Hunkapiller T, Parnes JR (1985) The T cell differentiation antigen Leu-2/T8 is homologous to immunoglobulin and T cell receptor variable regions. Cell 40:591

    Article  PubMed  CAS  Google Scholar 

  7. Reinherz EL, Kung PC, Goldstein G, Schlossman SF (1979) Separation of functional subsets of human T cells by a monoclonal antibody. Proc Natl Acad Sci USA 76:4061

    Article  PubMed  CAS  Google Scholar 

  8. Krensky AM, Reiss CS, Mier JW, Strominger JL, Burakoff SJ (1982) Long-term human cytolytic T cell lines allospecific for HLA-DR6 antigen are OKT4+. Proc Natl Acad Sci USA 79:2365

    Article  PubMed  CAS  Google Scholar 

  9. Meuer SC, Schlossman SF, Reinherz EL (1982) Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. Proc Natl Acad Sci USA 79:4395

    Article  PubMed  CAS  Google Scholar 

  10. Reinherz EL, Meuer SC, Schlossman SF (1983) Delineation of antigen receptors on human T lymphocytes. Immunol Today 4:5

    Article  CAS  Google Scholar 

  11. Meuer SC, Hodgdon JC, Cooper DA, Hussey RE, Fitzgerald KA, Schlossman SF, Reinherz EL (1983) Human cytotoxic T cell clones directed at autologous virustransformed targets: Further evidence for linkage of genetic restriction to T4 and T8 surface glycoproteins. J Immunol 131:185

    Google Scholar 

  12. Meuer SC, Hussey RE, Hodgdon JC, Hercend T, Schlossman SF, Reinherz EL (1982) Surface structures involved in target recognition by human cytotoxic T lymphocytes. Science 218:471

    Article  PubMed  CAS  Google Scholar 

  13. Doyle C, Strominger JL (1987) Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330:256

    Article  PubMed  CAS  Google Scholar 

  14. Blue M-L, Craig KA, Anderson P, Branton KR Jr, Schlossman SF (1988) Evidence for specific association between class I major histocompatibility antigens and the CD8 molecules of human suppressor/cytotoxic cells. Cell 54:413

    Article  PubMed  CAS  Google Scholar 

  15. Meuer SC, Fitzgerald KA, Hussey RE, Hodgdon JC, Schlossman SF, Reinherz EL (1983) Clonotypic structures involved in antigen-specific human T cell function. Relationship to the T3 Molecular Complex. J Exp Med 157:705

    Article  PubMed  CAS  Google Scholar 

  16. Meuer SC, Acuto O, Hussey RE, Hodgdon JC, Fitzgerald KA, Schlossman SF, Reinherz EL (1983) Evidence for the T3-associated 90 kD heterodimer as the T cell antigen receptor. Nature 303:808

    Article  PubMed  CAS  Google Scholar 

  17. Meuer SC, Acuto O, Hercend T, Schlossman SF, Reinherz EL (1984) The human T cell receptor. In: Paul WE (ed) Annual review of immunology. Ann Rev Inc, Palo Alto, 2: 23

    Google Scholar 

  18. Acuto O, Meuer SC, Hodgdon JC, Schlossman SF, Reinherz EL (1983) Peptide variability exists within the alpha and beta subunits of the human T cell receptor for antigen. J Exp Med 158:1368

    Article  PubMed  CAS  Google Scholar 

  19. Yanagi Y, Yoshikai Y, Leggett K, Clark SP, Aleksander I, Mak TW (1984) A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308:145

    Article  PubMed  CAS  Google Scholar 

  20. Hedrick SM, Cohen DI, Nielsen EA, Davis MM (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149

    Article  PubMed  CAS  Google Scholar 

  21. Dembic Z, Haas W, Weiss S, McCubrey J, Kiefer H, von Boehmer H, Steinmetz M (1986) Transfer of specificity by murine alpha and beta T cell receptor genes. Nature 320:232

    Article  PubMed  CAS  Google Scholar 

  22. Hercend T, Reinherz EL, Meuer SC, Schlossman SF, Ritz J (1983) Phenotypic and functional heterogeneity of human cloned natural killer cell lines. Nature 301:158

    Article  PubMed  CAS  Google Scholar 

  23. Moingeon P, Ythier A, Goubin G, Faure F, Nowill A, Delmon L, Rainaut M, Forestier F, Daffos F, Bohuon C, Hercend T (1986) A unique T cell receptor complex expressed on human fetal lymphocytes displaying natural killer-like activity. Nature 323:638

    Article  PubMed  CAS  Google Scholar 

  24. Jitsukawa S, Faure F, Lipinski M, Triebel F, Hercend T (1987) A novel subset of human lymphocytes with a T cell receptor-gamma complex. J Exp Med 166:1192

    Article  PubMed  CAS  Google Scholar 

  25. Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA, Owen FL, Seidman JG, Ip S, Rosen F, Krangel MS (1986) Identification of a putative second T cell receptor. Nature 322:145

    Article  PubMed  CAS  Google Scholar 

  26. Borst J, Alexander S, Elder J, Terhorst C (1983) The T3 complex on human T lymphocytes involves four structurally distinct glycoproteins. J Biol Chem 258:5135

    PubMed  CAS  Google Scholar 

  27. Meuer SC, Hodgdon JC, Hussey RE, Protentis JP, Schlossman SF, Reinherz EL (1983) Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones. J Exp Med 158:988

    Article  PubMed  CAS  Google Scholar 

  28. Leonard WJ, Depper JM, Crabtree GR, Rudikoff S, Pumphrey J, Robb RJ, Krönke M, Svetlik PB, Peffer NJ, Waldmann TA, Greene WC (1984) Molecular cloning and expression of cDNAs for the human Interleukin-2 receptor. Nature 311:626

    Article  PubMed  CAS  Google Scholar 

  29. Krönke M, Leonard WJ, Depper JM, Greene WC (1985) Sequential expression of genes involved in human T lymphocyte growth and differentiation. J Exp Med 161:1593

    Article  PubMed  Google Scholar 

  30. Isakov N, Scholz W, Altman A (1986) Signal transduction and intracellular events in T-lymphocyte activation. Immunol Today 7:271

    Article  CAS  Google Scholar 

  31. Davies AA, Cantrell DA, Hexham JM, Parker PJ, Rothbard J, Crumpton MJ (1987) The human T3 y chain is phosphorylated at Serine 126 in response to T lymphocyte activation. J Biol Chem 262:1

    Google Scholar 

  32. Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA (1989) A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: The lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med 158:1785

    Article  Google Scholar 

  33. Davignon D, Martz E, Reynolds T, Kürzinger K, Springer TA (1981) Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci USA 78:4535

    Article  PubMed  CAS  Google Scholar 

  34. Makgoba MW, Sanders ME, Luce GEG, Gugel EA, Dustin ML, Springer TA, Shaw S (1988) Functional evidence that intercellular adhesion molecule-1 (ICAM-1) is a ligand for LFA-1-dependent adhesion in T cell-mediated cytotoxicity. Eur J Immunol 18:637

    Article  PubMed  CAS  Google Scholar 

  35. Meuer SC, Hussey RE, Fabbi M, Fox D, Acuto O, Fitzgerald KA, Hodgdon JC, Protentis JP, Schlossman SF, Reinherz EL (1984) An alternative pathway of T cell activation: A functional role for the 50 kD T11 sheep erythrocyte receptor protein. Cell 36:897

    Article  PubMed  CAS  Google Scholar 

  36. Huet S, Wakasugi H, Sterkers G, Gilmour J, Tursz T, Boumesell L, Bernard A (1986) T cell activation via CD2 (T, gp50): The role of accessory cells in activating resting T cells via CD2. J Immunol 137:1420

    PubMed  CAS  Google Scholar 

  37. Meuer S, Hauer M, Deusch K, Moebius U, Meyer zum Büschenfelde K-H (1987) Two pathways of T cell activation. Behring Inst. Mitteilungen 81:15

    CAS  Google Scholar 

  38. Dustin ML, Sanders ME, Shaw S, Springer TA (1987) Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J Exp Med 165: 677

    Article  PubMed  CAS  Google Scholar 

  39. Hünig T, Tiefenthaler G, Meyer zum Büschenfelde K-H, Meuer SC (1987) Binding of CD2 to its complementary cell surface molecule provides a triggering signal through the “alternative pathway” of T cell activation. Nature 326:298

    Article  PubMed  Google Scholar 

  40. Tiefenthaler G, Hünig T, Dustin ML, Springer TA, Meuer SC (1987) Purified lymphocyte function-associated antigen-3 and T11 target structure are active in CD2-mediated T cell stimulation. Eur J Immunol 17:1847

    Article  PubMed  CAS  Google Scholar 

  41. Henkart MP, Henkart PA (1982) Lymphocyte-mediated cytolysis as a secretory phenomenon. Adv Exp Med Biol 146:227

    PubMed  CAS  Google Scholar 

  42. Sanderson CJ (1981) The mechanism of lymphocyte-mediated cytotoxicity. Biol Rev Cambridge Philos Soc 56:153

    Article  PubMed  CAS  Google Scholar 

  43. Berke G, Clark WR (1982) T lymphocyte-mediated cytolysis-A comprehensive theory. The mechanism of CTL-mediated cytolysis. Adv Exp Med Biol 146:57

    PubMed  CAS  Google Scholar 

  44. Russell JH (1983) Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol Rev 72:97

    Article  PubMed  CAS  Google Scholar 

  45. Henkart PA (1985) Mechanism of lymphocyte-mediated cytotoxicity. Ann Rev Immunol 3:31

    Article  CAS  Google Scholar 

  46. Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol 132:3197

    PubMed  CAS  Google Scholar 

  47. Henkart PA, Millard PJ, Reynolds CW, Henkart MP (1984) Cytolytic activity of purified cytoplasmic granules from cytotoxic rat LGL tumors. J Exp Med 160:75

    Article  PubMed  CAS  Google Scholar 

  48. Berrebi G, Takayama H, Sitkovsky MV (1987) Antigenreceptor interaction requirement for conjugate formation and lethal-hit triggering by cytotoxic T lymphocytes can be bypassed by protein kinase C activators and Ca2 + ionophores. Proc Natl Acad Sci USA 84:1364

    Article  PubMed  CAS  Google Scholar 

  49. Takayama H, Trenn G, Humphrey Jr W, Bluestone JA, Henkart PA, Sitkovksy MV (1987) Antigen receptor-triggered secretion of a trypsin-type esterase from cytotoxic T lymphocytes. J Immunol 138:566

    PubMed  CAS  Google Scholar 

  50. Takayama H, Sitkovsky MV (1987) Antigen receptor-regulated exocytosis in cytotoxic T lymphocytes. J Exp Med 166:725

    Article  PubMed  CAS  Google Scholar 

  51. Podack ER (1985) The molecular mechanism of lymphocyte-mediated tumor cell lysis. Immunol Today 6: No 1, 21

    Article  CAS  Google Scholar 

  52. Young JD, Cohn ZA, Podack ER (1986) The ninth component of complement and the pore-forming protein (Perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science 233:184

    Article  PubMed  CAS  Google Scholar 

  53. Shinkai, Y., Takio K, Okumura K (1988) Homology of perforin to the ninth omponent of complement (C9). Nature 334:525

    Article  PubMed  CAS  Google Scholar 

  54. Pasternack MS, Verret CR, Liu MA, Eisen HN (1986) Serine esterase in cytolytic T lymphocytes. Nature 322:740

    Article  PubMed  CAS  Google Scholar 

  55. Gershenfeld HK, Weissman IL (1986) Cloning of a cDNA for a T cell-specific serine protease from a cytotoxic T lymphocyte. Science 232:854

    Article  PubMed  CAS  Google Scholar 

  56. Masson D, Tschopp J (1987) A family of serine esterases in lytic granules of cytolytic T lymphocytes. Call 49:679

    CAS  Google Scholar 

  57. Ferguson WS, Verret CR, Reilly EB, Iannini MJ, Eisen HN (1988) Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes. J Exp Med 167:528

    Article  PubMed  CAS  Google Scholar 

  58. Schmidt RE, Mac Dermott RP, Bartley G, Bertovich M, Amato DA, Austen KF, Schlossman SF, Stevens RL, Ritz J (1985) Specific release of proteoglycans from human natural killer cells during target lysis. Nature 318:289

    Article  PubMed  CAS  Google Scholar 

  59. Tschopp J, Conzelmann A (1986) Proteoglycans in secretory granules of NK cells. Immunol Today 7:135

    Article  CAS  Google Scholar 

  60. Ostergaard HL, Kane KP, Mescher MF, Clark WR (1987) Cytotoxic T lymphocyte mediated lysis without release of serine esterase. Nature 330:71

    Article  PubMed  CAS  Google Scholar 

  61. Trenn G, Takayama H, Sitkovsky MV (1987) Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T lymphocytes. Nature 330:72

    Article  PubMed  CAS  Google Scholar 

  62. Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: The significance of apoptosis. Int Rev Cytol 68:251

    Article  PubMed  CAS  Google Scholar 

  63. Russell JH, Dubos CB (1980) Mechanisms of immune lysis: II. CTL-induced nuclear disintegration of the target begins within minutes of cell contact. J Immunol 125:1256

    PubMed  CAS  Google Scholar 

  64. Russell JH, Masakowski V, Rucinsky T, Phillips G (1982) Mechanisms of immune lysis: III. characterization of the nature and kinetics of the cytotoxic T lymphocyte-induced nuclear lesion in the target J. Immunol 128:2087

    PubMed  CAS  Google Scholar 

  65. Nakamura M, Saraki Y, Watanabe N (1981) Purification and characterization of the Ca2+ plus Mg2+-dependent endodeoxyribonuclease from calf thymus chromatin. Biochemistry (Tokyo) 89:143

    CAS  Google Scholar 

  66. Duke RC, Chervenak R, Cohen JJ (1983) Endogenous endonuclease-induced DNA fragmentation: An early event in cell-mediated cytolysis. Proc Natl Acad Sci USA 80:6361

    Article  PubMed  CAS  Google Scholar 

  67. Ucker DS (1987) Cytotoxic T lymphocytes and glucocorticoids activate an endogenous suicide process in target cells. Nature 327:62

    Article  PubMed  CAS  Google Scholar 

  68. Schmid DS, Tite JP, Ruddle NH (1986) DNA fragmentation: manifestation of target cell destruction mediated by cytotoxic T cell lines, lymphotoxin-secreting helper T cell clons, and cell-free lymphotoxin-containing supernatants. Proc Natl Acad Sci USA 83:1881

    Article  PubMed  CAS  Google Scholar 

  69. Schmid DS, McGrath KM, Hornung RL, Paul N, Ruddle NH (1987) Target cell DNA fragmentation is mediated by lymphotoxin and tumor necrosis factor. Lymphokine Res 6:195

    PubMed  CAS  Google Scholar 

  70. Li CB, Gray PW, Lin PF, McGrath KM, Ruddle FH, Rud-dle NH (1987) Cloning and expression of murine lymhotoxin cDNA. J Immunol 138:4496

    PubMed  CAS  Google Scholar 

  71. Gardner SM, Mock BA, Hilgers J, Huppi KE, Roeder WD (1987) Mouse lymphotoxin and tumor necrosis factor: Structural analysis of the cloned genes, physical linkage and chromsomal position. J Immunol 139:476

    PubMed  CAS  Google Scholar 

  72. Gray P, Chen E, Li CB, Tang WL, Ruddle N (1987) The murine tumor necrosis factor-beta (lymphotoxin) gene sequence. Nucl Acids Res 15:3937

    Article  PubMed  CAS  Google Scholar 

  73. Scheurich P, Ucer U, Kronke M, Pfizenmaier K (1986) Quantification and characterization of high affinity membrane receptors for tumor necrosis factor on human leukemia cell lines. Int J Cancer 38:127

    Article  PubMed  CAS  Google Scholar 

  74. Collins T, Lapierre LA, Fiers W, Strominger JL, Pober JS (1986) Recombinant tumor necrosis factor increases mRNA levels and surface expression of HLA-A, B antigen in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci USA 83:446

    Article  PubMed  CAS  Google Scholar 

  75. Broudy VC, Harlan JM, Adamson JW (1987) Disparate effects of tumor necrosis factor-alpha/cachectin and tumor necrosis factor-beta lymphotoxin on hematopoietic growth factor production and neutrophil adhesion molecule expression by cultured human endothelial cells. J Immunol 138:4298

    PubMed  CAS  Google Scholar 

  76. Pujol-Borrell R, Todd I, Doshi M, Bottazzo GF, Sutton R, Gray D, Adolf GR, Feldmann M (1987) HLA class II induction in human islet cells by interferon-gamma plus tumor necrosis factor on lymphotoxin. Nature 326:304

    Article  PubMed  CAS  Google Scholar 

  77. Pfizenmaier K, Scheurich P, Schluter C, Kronke M (1987) Tumor necrosis factor enhances HLA-A,B,C and HLA-DR gene expression in human tumor cells. J Immunol 138:975

    PubMed  CAS  Google Scholar 

  78. Perussia B, Kobayashi M, Rossi ME, Anegon I, Trinchieri G (1987) Immune interferon enhances function properties of human granulocytes: Role of Fc receptor and effect of lymphotoxin tumor necrosis factor, and granocytemacrophage colony stimulation factor. J Immunol 138:765

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meuer, S.C., Dienes, H.P. Lymphocyte mediated cell lysis. Virchows Archiv B Cell Pathol 57, 1–9 (1989). https://doi.org/10.1007/BF02899059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899059

Keywords

Navigation