Skip to main content
Log in

Quantum three-body problems

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

A scheme for dealing with the quantum three-body problem is presented to separate the rotational degrees of freedom completely from the internal ones. In this method, the three-body Schrodinger equation is reduced to a system of coupled partial differential equations, depending only upon three internal variables. For arbitrary total orbital angular momentum / and the parity (− 1)l+λ (λ = 0 or 1), the number of the equations in this system isl = 1 −λ. By expanding the wavefunction with respect to a complete set of orthonormal basis functions, the system of equations is further reduced to a system of linear algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delves, L. M., Tertiary and general-order collisions, Nucl. Phys., 1959, 9(3):391.

    Article  Google Scholar 

  2. Delves, L. M., Tertiary and general-order collisions (II), Nucl. Phys., 1960, 20(2):275.

    Google Scholar 

  3. Smith, F. T., A symmetric representation for three-body problems,.J. Math. Phys., 1962, 3(4):735.

    Article  MATH  Google Scholar 

  4. Smith, F. T., Generalized angular momentum in many-body collisions, Phys. Rev., 1960, 120(3):1058.

    Article  MATH  MathSciNet  Google Scholar 

  5. Krivec, K., Hyperspherical-harmonies methods for few-body problems, Few-Body Systems, 1998, 25:199.

    Article  Google Scholar 

  6. Fano, U., Green, D., Bohn, J. L. et al., Geometry and symmetries of multi- particle systems, J. Phys. B, 1999, 32(6): R1.

    Article  Google Scholar 

  7. Haftel, M. I., Mandelzweig, V. B., Fast convergent hyperspherical harmonic expansion for three-body systems, Ann. Phys. (NY), 1989, 189(1):29.

    Article  MathSciNet  Google Scholar 

  8. Giocobiano, E., Biruben, F., Energy level measurements and Lamb shift in helium, J. Phys. B., 1982, 15(2):1385.

    Google Scholar 

  9. Juncar, P., Berry, H. G., Damashini, R. et al., Energies of some triplet levels in+ He I, J. Phys. B, 1983, 16(3): 381.

    Article  Google Scholar 

  10. Hlousek, L., Lee, S. A., Fairbank, W. M., Precision wave length measurements and new experimental Lamb shifts in helium, Phys. Rev. Lett., 1983, 50(5):328.

    Article  Google Scholar 

  11. Sansonetti, C. J., Martin, W. C., Accurate wave-number measurements for the4He I 1s 2p-ls 3d transitions and comparisons of several term separations with theory, Phys. Rev. A, 1984, 29(1):159.

    Article  Google Scholar 

  12. Radzig, A. A., Smirnov, B. M., Reference Data on Atoms, Molecules, and Ions, Berlin:Springer-Verlag, 1985.

    Google Scholar 

  13. Freund, D. E., Huxtable, B. D., Morgan III, J. D., Variational calculations on the helium isoelectronic sequence, Phys. Rev. A, 1984, 29(2):980.

    Article  Google Scholar 

  14. Haftel, M. I., Mandelzweig, V. B., A fast convergent hyperspherical expansion for the helium gruund state, Phys. Lett. A, 1987, 120(5):232.

    Article  Google Scholar 

  15. Haftel, M. I., Mandelzweig, V. B., Correlation-function hyperspherical harmonic calculations of theppμ,ddμ, andttμ molecular ions, Phys. Rev. A, 41(5):2339.

  16. Krivec, R., Mandelzweig, V. B., Matrix elements of potentials in the correlation-function hyperspherical-harmonic method, Phys. Rev. A, 1990, 42(7):3779.

    Article  Google Scholar 

  17. Mandelzweig, V. B., Hyperspherical approach to few body problems:A sum- and new developments, Nucl. Phys. A, 1990, 508:63c.

    Article  Google Scholar 

  18. Barnea, N., Mandelzweig, V. B., Matrix elements of potentials forL = 1 hyperspherical states, Phys. Rev. A, 1990, 41 (9):5209.

    Article  Google Scholar 

  19. Barnea, N., Mandelzweig, V. B., Matrix elements between vector hyperspherical states, Phys. Rev. A, 1991, 44(11): 7053.

    Article  MathSciNet  Google Scholar 

  20. Berkovic, S., Krivec, R., Mandelzweig, V.et a1., Hyperspherical approach to the calculation of few-body atomic resonances, Phys. Rev. A, 1997, 55(2):988.

    Article  Google Scholar 

  21. Lin, C. D., Doubly excited states, including new classification schemes, Adv. At. Ma1. Phys., 1986, 22:77.

    Google Scholar 

  22. Tang, J. Z., Watanabe, S., Matsuzawa, M., General computational method for two-electron systems, Phys. Rev. A., 1992, 46:2437.

    Article  Google Scholar 

  23. Zhou, B., Lin, C. D., Tang, J. Z. et a1., A hyperspherical close- coupling calculation of photoionization from the He atom, Li+ and C4+ ions (I)—Below theN = 2 threshold, J. Phys. B, 1993, 26(16):2555.

    Article  Google Scholar 

  24. Zhou, B., Lin, C. D., A hyperspherical close-coupling calculation of photoionization from the He atom, Li+ and C04+ ions (II)—Between theN = 2 andN = 3 thresholds, J. Phys. B, 1993, 26(16):2575.

    Article  Google Scholar 

  25. Heim, T. A., Amen, G. B., Rau, A. R. P., Pair-Rydberg description of doubly excited states:Diabatic evolution of correlation patterns, Phys. Rev. A, 1997, 55(4):2674.

    Article  Google Scholar 

  26. Fabre de la Ripelle, M., Haftel, M. I., Larsen, S. Y., Potential-harmonic expansion for atomic wave functions, Phys. Rev. A, 1991, 44(11):7084.

    Article  Google Scholar 

  27. Feagin, J. M., Macek, J., Starace, A. F., Use of the Fock expansion for1 S-state wave functions of two-electron atoms and ions, Phys. Rev. A, 1985, 32(6):3219.

    Article  Google Scholar 

  28. Ho, Y. K.,P-wave doubly excited resonances in He, J. Phys. B, 1982, 15(19):L691.

    Article  Google Scholar 

  29. Ho, Y. K., Doubly excited1 S e resonance states of helium atoms below theN hydrogenic thresholds withN ⪯ 6, Phys. Rev. A, 1986, 34(5):4402.

    Article  Google Scholar 

  30. Yan, J., Qu, Y. Z., Voky, L. et al., Polarization effect on He doubly excited states below theN = 2 threshold of He+, Phys. Rev. A., 1998, 57(2):997.

    Article  Google Scholar 

  31. Selles, P., Mazeau, J., Huetz, A., Wannier theory for Po andD e states of two electrons, J. Phys. B, 1987, 20(19): 5183.

    Article  Google Scholar 

  32. Heim, T. A., Green, D., Alternative sets of hyperspherical harmonic:Satisfying cusp conditions through frame transformations, J. Math. Phys., 1999, 40(4):2162.

    Article  MATH  MathSciNet  Google Scholar 

  33. Viviani, M., Transformation coefficients of hyperspherical harmonic functions of anA-body system. Few-Body Systems, 1998, 25:177.

    Article  Google Scholar 

  34. Wigner, E. P., Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, New York:Academic Press, 1959.

    MATH  Google Scholar 

  35. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton: Princeton University Press, 1957.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z. Quantum three-body problems. Sci. China Ser. A-Math. 43, 1093–1107 (2000). https://doi.org/10.1007/BF02898245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898245

Keywords

Navigation