Skip to main content
Log in

Ginzburg-Landau vortices with pinning functions and self-similar solutions in harmonic maps

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We obtain theH 1-compactness for a system of Ginzburg-Landau equations with pinning functions and prove that the vortices of its classical solutions are attracted to the minimum points of the pinning functions. As a corollary, we construct a self-similar solution in the evolution of harmonic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Likharev, K., Superconducting weak links, Rev. Modem Phys., 1979, 51: 101.

    Article  Google Scholar 

  2. Chapman, S. J., Richardson, G., Vortex pinning by inhomogeneities in type-II super-conductors, Phys. D, 1997, 108: 397.

    Article  MATH  MathSciNet  Google Scholar 

  3. Chapman, S. J., Du, Q., Gunzburger, M. D., A model for variable thickness superconducting thin films, Z. Angew. Math. Phys., 1996, 47: 410.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bethuel, T., Brezis, H., Helein, F., Ginzburg-Landau Vortices, Botston: Birkhauser, 1994, 1–68.

    MATH  Google Scholar 

  5. Struwe, M., Geometric evolution problems, in Nonlinear Partial differential Equations in Differential Geometry ( eds. Hardt, R., Wolf, M.), Heidelberg, New York: Springer-Verlag, 1996, 259–339.

    Google Scholar 

  6. Fan, H., Existence of the self-similar solutions in the heat flow of harmonic maps, Science in China, Ser A, 1999, 42(2): 113.

    Article  MATH  Google Scholar 

  7. Lin, F., Wang, C., Harmonic and quasi-harmonic sphere, Comm. Anal. Geom., 1999, 7: 397.

    MATH  MathSciNet  Google Scholar 

  8. Rubinstein, J., On the equilibrium position of Ginzhurg Landau vortices, Z. Angew. Math. Phys., 1995, 46:739.

    Article  MATH  MathSciNet  Google Scholar 

  9. Andre, N., Shafir, I., Asymptotic behaviour for the Ginzhurg-Landau functional with weights (1), Arch. Rat. Mech. Anal., 1998, 142:45.

    Article  MATH  Google Scholar 

  10. Ding, S., Liu, Z., Remarks for the asymptotics of a kind of Ginzburg- Landau functional, Chin. Ann. Math. (in Chinese), 1998, 19A: 621.

    MathSciNet  Google Scholar 

  11. Ye, D., Zhou, F., A generalized two dimensional Emden- Fowler equation with exponential nonlinearity, in Proceedings of the Second International Conference on Nonlinear Analysis, Tianjin, 14-19 June, 1999 (eds. Inng, Y., Zhang, K.C.), Singapore: World Scientific Publishing Company, 2000, (to appear).

    Google Scholar 

  12. Jian, H., A relation betweenT-convergence of functionals and their associated gradient flows, Science in China, Ser. A, 1999, 42(2):133.

    Article  MATH  MathSciNet  Google Scholar 

  13. Lin, F. H., Some dynamical properties of Ginzhurg-Landau vortices, Commu. Pure Appl. Math., 1996, 49:323.

    Article  MATH  Google Scholar 

  14. Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton: Princeton Univ. Press, 1983.

    MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Heidelberg, New York: Springer- Verlag, 1977.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiyu Jian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, H., Wang, Y. Ginzburg-Landau vortices with pinning functions and self-similar solutions in harmonic maps. Sci. China Ser. A-Math. 43, 1019–1025 (2000). https://doi.org/10.1007/BF02898235

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898235

Keywords

Navigation