Skip to main content
Log in

Tributyltin (TBT) increases TNFα mRNA expression and induces apoptosis in the murine macrophage cell line in vitro

  • Original Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Objective

Tributyltin (TBT) compounds have been widely used as antifouling agents for shipbottom paint. The immune system is a target of TBT intoxication. We evaluated the effects of TBT chloride in macrophages, which have critical roles in the immune system, using a murine macrophage lineage cell line, J774.1,in vitro.

Methods

We examined tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) andc-jun mRNA expression in J774.1 cells. The effects of TBT on the apoptosis of J774.1 cells were examined by determining the percentage of TUNEL-positive cells and caspase-3 activity.

Results

The mean values of the viabilities of J774.1 cells exposed to TBT decreased dose-dependently. The relative mRNA expression of TNFα increased dose-dependently, however, that of IL-1β was not significantly different among the groups. The mean percentage of TUNEL-positive cells increased dose-dependently. Increases in the caspase-3 activities of J774.1 cells were observed in the groups exposed to higher concentrations of TBT. The mean value of relative mRNA expression of c-Jun transcription factor increased dose-dependently.

Conclusions

The increases in the percentage of TUNEL-positive cells and in caspase-3 activity suggested that exposure to TBT induces apoptosis of J774.1 cells. The increases in the mRNA expression of TNFα andc-jun by TBT may be related to apoptosis in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fent K. Ecotoxicology of organotin compounds. Crit. Rev. Toxicol. 1996;26:1–117.

    Article  PubMed  CAS  Google Scholar 

  2. Boyer IJ. Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals. Toxicology 1989;55:253–298.

    Article  PubMed  CAS  Google Scholar 

  3. Horiguchi T. Organotin compounds and anomalies of genital organ in sea snail. Kagaku. 1998;68:546–551 (in Japanese).

    CAS  Google Scholar 

  4. Shim WJ, Oh JR, Kahng SH, Shim JH, Lee SH. Accumulation of tributyl- and triphenyltin compounds in Pacific oyster,Crassostrea gigas, from the Chinhae Bay System, Korea. Arch. Environ. Contam. Toxicol. 1998;35:41–47.

    Article  PubMed  CAS  Google Scholar 

  5. Ministry of the Environment. Discussion of Details. In: Ministry of the Environment, editor. Kankyo Hakusho, 2000. Tokyo; Gyousei, 2000;117–119 (in Japanese).

    Google Scholar 

  6. Strand J, Jacobsen JA, Pedersen B, Granmo A. Butyltin compounds in sediment and molluscs from the shipping strait between Denmark and Sweden. Environ. Pollut. 2003;124: 7–15.

    Article  PubMed  CAS  Google Scholar 

  7. Tsunoda M. Simultaneous determination of organotin compounds in fish and shellfish by gas chromatography with a flame photometric detector. Tohoku J. Exp. Med. 1993;169:167–178.

    Article  PubMed  CAS  Google Scholar 

  8. Nakano K, Saito K, Niimura M, Takahashi M, Takakura Y. Determination of tributyltin compounds in Fish, shellfishes and their processed products (II). Annu. Rep. Fukushima Inst. Public Health Environ. Sci. 1991;8:54–58 (in Japanese).

    Google Scholar 

  9. Short JW, Thrower FP. Accumulation of butyltins in muscle tissue of chinook salmon reared in sea pens treated with tri-n-butyltin. Mar. Pollut. Bull. 1986;17:542–545.

    Article  CAS  Google Scholar 

  10. Whalen MM, Loganathan BG, Kannan K. Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cellsin vitro. Environ. Res. 1999;81:108–116.

    Article  PubMed  CAS  Google Scholar 

  11. Kannan K, Falandysz J. Butyltin residues in sediments, fish, fish-eating birds, harbour porpoise and human tissues from the Polish coast of the Baltic Sea. Mar. Pollut. Bull. 1997;34:203–207.

    Article  Google Scholar 

  12. Snoeij NJ, Penninks AH, Seinen W. Dibutyltin and tributyltin compounds induce thymus atrophy in rats due to a selective action on thymic lymphoblasts. Int. J. Immunopharmacol. 1988; 10:891–899.

    Article  PubMed  CAS  Google Scholar 

  13. Raffray M, Cohen GM. Thymocyte apoptosis as a mechanism for tributyltin-induced thymic atrophy in vivo. Arch. Toxicol. 1993;67:231–236.

    Article  PubMed  CAS  Google Scholar 

  14. Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB. Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett. 1998; 429:351–355.

    Article  PubMed  CAS  Google Scholar 

  15. Stridh H, Orrenius S, Hampton MB. Caspase involvement in the induction of apoptosis by the environmental toxicants tributyltin and triphenyltin. Toxicol. Appl. Pharmacol. 1999; 156:141–146.

    Article  PubMed  CAS  Google Scholar 

  16. Stridh H, Cotgreave I, Muller M, Orrenius S, Gigliotti D. Organotin-induced caspase activation and apoptosis in human peripheral blood lymphocytes. Chem. Res. Toxicol. 2001;14:791–798.

    Article  PubMed  CAS  Google Scholar 

  17. Aw TY, Nicotera P, Manzo L, Orrenius S. Tributyltin stimulates apoptosis in rat thymocytes. Arch. Biochem. Biophys. 1990;283:46–50.

    Article  PubMed  CAS  Google Scholar 

  18. Gennari A, Viviani B, Galli CL, Marinovich M, Pieters R, Corsini E. Organotins induce apoptosis by disturbance of [Ca2+]i and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol. Appl. Pharmacol. 2000;169:185–190.

    Article  PubMed  CAS  Google Scholar 

  19. Brenner DA, O’Hara M, Angel P, Chojkier M, Karin M. Prolonged activation ofjun and collagenase genes by tumor necrosis factor-α. Nature 1989;337:661–663.

    Article  PubMed  CAS  Google Scholar 

  20. Tsunoda M, Sharma RP. Modulation of tumor necrosis factor α expression in mouse brain after exposure to aluminum in drinking water. Arch. Toxicol. 1999;73:419–426.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson VJ, Tsunoda M, Sharma RP. Increased production of proinflammatory cytokines by murine macrophages following oral exposure to sodium selenite but not to seleno-L-methionine. Arch. Environ. Contam. Toxicol. 2000;39:243–250.

    Article  PubMed  CAS  Google Scholar 

  22. Mathew JS, Sharma RP. Effect of all-trans-retinoic acid on cytokine production in a murine macrophage cell line. Int. J. Immunopharmacol. 2000;22:693–706.

    Article  PubMed  CAS  Google Scholar 

  23. Reiner SL, Zheng S, Corry DB, Locksley RM. Constructing polycompetitor cDNAs for quantitative PCR. J. Immunol. Methods 1993;165:37–46.

    Article  PubMed  CAS  Google Scholar 

  24. Benavides GR, Hubby B, Grosse WM, McGraw RA, Tarleton RL. Construction and use of a multi-competitor gene for quantitative RT-PCR using existing primer sets. J. Immunol. Methods 1995;181:145–156.

    Article  PubMed  CAS  Google Scholar 

  25. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493–501.

    Article  PubMed  CAS  Google Scholar 

  26. Odaka C, Mizuochi T. Role of macrophage lysosomal enzymes in the degradation of nucleosomes of apoptotic cells. J. Immunol. 1999;163:5346–5352.

    PubMed  CAS  Google Scholar 

  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254.

    Article  PubMed  CAS  Google Scholar 

  28. Jayanthi S, McCoy MT, Ladenheim B, Cadet JL. Methamphetamine causes coordinate regulation of Src, Cas, Crk, and Jun N-terminal kinase-Jun pathway. Mol. Pharmacol. 2002; 61:1124–1131.

    Article  PubMed  CAS  Google Scholar 

  29. Mathison JC, Wolfson E, Ulevitch RJ. Participation of tumor necrosis factor in the mediation of gram negative bacteria lipopolysaccharide-induced injury in rabbits. J. Clin. Invest. 1988;81:1925–1937.

    Article  PubMed  CAS  Google Scholar 

  30. Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. Detective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 1997;278: 1630–1632.

    Article  PubMed  CAS  Google Scholar 

  31. Yu ZP, Matsuoka M, Wispriyono B, Iryo Y, Igisu H. Activation of mitogen-activated protein kinases by tributyltin in CCRF-CEM cells: Role of intracellular Ca2+ Toxicol. Appl. Pharmacol. 2000;168:200–207.

    Article  PubMed  CAS  Google Scholar 

  32. Corsini E, Terzoli A, Bruccoleri A, Marinovich M, Galli CL. Induction of tumor necrosis factor-αin vivo by a skin irritant, tributyltin, through activation of transcription factors: its pharmacological modulation by anti-inflammatory drugs. J. Invest. Dermatol. 1997;108:892–896.

    Article  PubMed  CAS  Google Scholar 

  33. Wilson MR. Apoptotic signal transduction: emerging pathways. Biochem. Cell. Biol. 1998;76:573–582.

    Article  PubMed  CAS  Google Scholar 

  34. Lavastre V, Girard D. Tributyltin induces human neutrophil apoptosis and selective degradation of cytoskeletal proteins by caspases. J. Toxicol. Environ. Health A 2002;65:1013–1024.

    Article  PubMed  CAS  Google Scholar 

  35. Zucker RM, Elstein KH, Thomas DJ, Rogers JM. Tributyltin and dexamethasone induce apoptosis in rat thymocytes by mutually antagonistic mechanisms. Toxicol. Appl. Pharmacol. 1994;127:163–170.

    Article  PubMed  CAS  Google Scholar 

  36. Dunn C, Wiltshire C, MacLaren A, Gillespie DAF. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal. 2002;14:585–593.

    Article  PubMed  CAS  Google Scholar 

  37. Bossy-Wetzel E, Bakiri L, Yaniv M. Induction of apoptosis by the transcription factor c-Jun. EMBO J. 1997;16:1695–1709.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou T, Zhou G, Song W, Eguchi N, Lu W, Lundin E, Jin T, Nordberg G. Cadmium-induced apoptosis and changes in expression ofp53, c-jun andMT-1 genes in testes and ventral prostate of rats. Toxicology, 1999;142:1–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Tsunoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, K., Tsunoda, M. & Konno, N. Tributyltin (TBT) increases TNFα mRNA expression and induces apoptosis in the murine macrophage cell line in vitro. Environ Health Prev Med 9, 266–271 (2004). https://doi.org/10.1007/BF02898141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898141

Key words

Navigation