Skip to main content
Log in

Effects of methanolic extracts from broad beans on cellular growth and antioxidant enzyme activity

  • Original Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Objective

There are several reports of cellular-aging-dependent alterations in the antioxidant capacity of human fibroblasts. Fibroblasts show slower the growth rate at late passages (referred to hereafter as old cells) than at early passages (referred to hereafter as young cells). Antioxidants may control cellular growth by modulating reactive oxygen species (ROS). Methanolic extracts from broad beans (MEBB) contain phenolic compounds and have ROS-scavenging activities. In this study, we investigated the effects of MEBB on cellular growth and antioxidant levels in normal human lung fibroblasts.

Methods

To determine cytosolic superoxide dismutase (SOD) activities, cytosolic glutathione peroxidase (GSH-Px) activities, catalase activities, reduced glutathione (GSH) concentrations, and growth rate, MEBB treatments were performed on young and old cells.

Results

In young and old cells treated with 120 μg/ml MEBB, the growth rates increased by 28.1 and 15.2%, respectively, compared with controls. The MEBB treatment of young cells caused a 62.5% increase in SOD activity, but the treatment of old cells caused a 39.5% decrease. The catalase activities of the young and old cells treated with MEBB were equal to those of control cells. Young and old cells treated with MEBB were equal to the control cells in terms of GSH-Px activity. The GSH concentrations in the young and old cells treated with 120 μg/ml MEBB increased by 22.1 and 45.9%, respectively.

Conclusion

These studies elucidated a new cellular growth mechanism whereby human lung fibroblasts modulate intracellular GSH levels via the action of MEBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585–621.

    Article  Google Scholar 

  2. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965; 37: 614–636.

    Article  PubMed  CAS  Google Scholar 

  3. Choi H-S, Moore DD. Induction of c-fos and c-jun genes, expression by phenolic antioxidants. Mol Endocrinol. 1993; 7: 1596–1602.

    Article  PubMed  CAS  Google Scholar 

  4. Keogh BP, Tresini M, Cristofalo VJ, Allen RG. Effects of cellular aging on the induction of c-fos by antioxidant treatments. Mech Ageing Dev. 1996; 86: 151–160.

    Article  PubMed  CAS  Google Scholar 

  5. Keogh BP, Allen RG, Tresini M, Furth JI, Cristofalo VJ. Antioxidants stimulate transcriptional activation of the c-fos gene by multiple pathways in human fetal lung fibroblasts (WI-38). J Cell Physiol. 1998; 176: 624–633.

    Article  PubMed  CAS  Google Scholar 

  6. Nishikura K, Murray JM. Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol Cell Biol. 1987; 7: 639–649.

    PubMed  CAS  Google Scholar 

  7. Gamberini M, Leite LC. Proliferation of mouse fibroblasts induced by 1,2-dimethylhydrazine auto-oxidation: role of iron and free radicals. Biochem Biophys Res Commun. 1997; 234: 44–47.

    Article  PubMed  CAS  Google Scholar 

  8. Gansauge S, Gansauge F, Gause H, Poch B, Schoenberg HM, Beger HG. The induction of apoptosis in proliferating human fibroblasts by oxygen radicals is associated with a p53- and p21WAFICIP1 induction. FEBS Lett. 1997; 404: 6–10.

    Article  PubMed  CAS  Google Scholar 

  9. Schreck R, Rieber P, Bacuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 1991; 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  10. Cao Y, Maddox JF, Mastro AM, Sxholz RW, Hildebradt G, Reddy C. Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes. J Nutr. 1992; 122: 2121–2127.

    PubMed  CAS  Google Scholar 

  11. Dypbukt JM, Ankarcrona M, Burkitt M, Sjöholm Å, Ström K, Orrenius S, et al. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting, R1Nm5F cells. The role of intracellular polyamines. J Biol Chem. 1994; 269: 30553–30560.

    PubMed  CAS  Google Scholar 

  12. Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005; 65: 948–956.

    PubMed  CAS  Google Scholar 

  13. Okada M, Okada Y, Inaba R, Iwata H. Scavenging effects of methanolic extracts of broad beans on free-radical species. Environ Health Prev Med. 1998; 3: 6–11.

    CAS  Google Scholar 

  14. Yuan H, Kaneko T, Matsuo M. Increased susceptibility of late passage human diploid fibroblasts to oxidative stress. Exp Gerontol. 1996; 31: 465–474.

    Article  PubMed  CAS  Google Scholar 

  15. Sun AS, Aggarwal BB, Packer L. Enzyme levels of normal human cells: aging in culture. Arch Biochem Biophys. 1975; 170: 1–11.

    Article  PubMed  CAS  Google Scholar 

  16. Keogh BP, Allen RG, Pignolo R, Norton J, Tresini M, Cristofalo VJ. Expression of hydrogen peroxide and glutathione metabolizing enzymes in human skin fibroblasts derived from donors of different ages. J Cell Physiol. 1996; 167: 512–522.

    Article  PubMed  CAS  Google Scholar 

  17. Okada Y, Kimura H, Aoyama T. Neurotropin increases in vitro life span of human fibroblasts. Mech Ageing Dev. 1986; 35: 133–143.

    Article  PubMed  CAS  Google Scholar 

  18. Rikans LE, Snowden CD, Moore DR. Effect of aging on enzymatic antioxidant defenses in rat liver mitochondria. Gerontology. 1992; 38: 133–138.

    PubMed  CAS  Google Scholar 

  19. Leist M, Raab B, Maurer S, Rösick U, Brigelius-Flohé R. Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induced genotoxicity. Free Radic Biol Med. 1996; 21: 297–306.

    Article  PubMed  CAS  Google Scholar 

  20. Crapo JD, McCord JM, Fridovich I. Preparation and assay of superoxide dismutases. Methods Enzymol. 1978; 53: 382–393.

    Article  PubMed  CAS  Google Scholar 

  21. Tappel AI. Glutathione peroxidase and hydroperoxides. Methods Enzymol. 1978; 52: 506–513.

    Article  PubMed  CAS  Google Scholar 

  22. Chance B, Maehly AC. Assay of catalases and peroxidase. Methods Enzymol. 1955; 2: 764–775.

    Article  Google Scholar 

  23. Tietze F, Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Application to mammalian blood and other tissues. Anal Biochem. 1969; 27: 502–522.

    Article  PubMed  CAS  Google Scholar 

  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez JA, Theoduloz C, Sanchez M, Razmilic I, Schmeda-Hirschmann G. Gastroprotective and ulcer-healing effect of new solidagenone derivatives in human cell cultures. Life Sci. 2005; 77: 2193–2205.

    Article  PubMed  CAS  Google Scholar 

  26. Paduch R, Wojciak-Kosior M, Matysik G. Investigation of biological activity ofLamii albi flos extracts. J Ethnopharmacol. 2007; 110: 69–75.

    Article  PubMed  Google Scholar 

  27. Prasad KN, Kumar R. Effect of individual and multiple antioxidant vitamins on growth and morphology of human nontumorigenic and tumorigenic parotid acinar cells in culture. Nutr Cancer. 1996; 26: 11–19.

    PubMed  CAS  Google Scholar 

  28. Benito S, Fernandez Y, Mitjavila S, Moussa M, Anglade F, Periquet A. Phospholipid fatty acid composition affects enzymatic antioxidant defenses in cultured Swiss 3T3 fibroblasts. Redox Rep. 1997; 3: 281–286.

    PubMed  CAS  Google Scholar 

  29. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991; 1072: 129–157.

    PubMed  CAS  Google Scholar 

  30. Kim BY, Han MJ, Chung AS. Effects of reactive oxygen species on proliferation of Chinese hamster lung fibroblast (V79) cells. Free Radic Biol Med. 2001; 30: 686–698.

    Article  PubMed  CAS  Google Scholar 

  31. Meyer M, Caselman WH, Schlüter V, Schreck R, Hofschneider PH, Baeuerle PA. Hepatitis B virus transactivator MHBs: Activation of NF-κB, selective inhibition by antioxidants and integral membrane localization. EMBO J. 1992; 11: 2991–3001.

    PubMed  CAS  Google Scholar 

  32. Kong X-J, Fanburg BL. Regulation of Cu, Zn-superoxide dismutase in bovine pulmonary artery endothelial cells. J Cell Physiol. 1992; 153: 491–497.

    Article  PubMed  CAS  Google Scholar 

  33. Matsumura K, Kim JY, Tsutsumi S, Hyon SH. Hibernation, reversible cell growth inhibition by epigallocatechin-3-O-gallate. J Biotechnol. 2007; 127: 758–764.

    Article  PubMed  CAS  Google Scholar 

  34. Kaneko T, Tahara S, Taguchi T, Kondo H. Accumulation of oxidative DNA damage, 8-oxo-2′-deoxyguanosine, and change of repair systems during in vitro cellular aging of cultured human skin fibroblasts. Mutat Res. 2001; 487: 19–30.

    PubMed  CAS  Google Scholar 

  35. Takahashi S, Zeydel M. γ-glutamyl transpeptidase and glutathione in aging IMR-90 fibroblasts and in differentiating 3T3 L1 preadipocytes. Arch Biochem Biophys. 1982; 214: 260–267.

    Article  PubMed  CAS  Google Scholar 

  36. Honda S, Matsuo M. Relationships between the cellular glutathione level and in vitro life span of human diploid firoblasts. Exp Gerontol. 1988; 23: 81–86.

    Article  PubMed  CAS  Google Scholar 

  37. Kim SJ, Lim MH, Chun JK, Won YH. Effects of flavonoids of Ginkgo biloba on proliferation of human skin fibroblast. Skin Pharmacol. 1997; 10: 200–205.

    Article  PubMed  CAS  Google Scholar 

  38. Vierstra RD, John TR, Poff KL. Kaempferol 3-0-galactoside, 7-0-rhamnoside is the major green fluorescing compound in the epidermis ofVicia faba. Plant Physiol. 1982; 69: 522–525.

    PubMed  CAS  Google Scholar 

  39. Braam B, Langelaar-Makkinje M, Verkleij A, Bluyssen H, Verrips T, Koomans HA, et al. Anti-oxidant sensitivity of donor age-related gene expression in cultured fibroblasts. Eur J Pharmacol. 2006; 542: 154–161.

    Article  PubMed  CAS  Google Scholar 

  40. Ochiai T, Shimeno H, Mishima K, Iwasaki K, Fujiwara M, Tanaka H, et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta. 2007; 1770: 578–584.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizue Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, M., Okada, Y. Effects of methanolic extracts from broad beans on cellular growth and antioxidant enzyme activity. Environ Health Prev Med 12, 251–257 (2007). https://doi.org/10.1007/BF02898032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898032

Key words

Navigation