Skip to main content
Log in

Sequence-specific DNA damage by reactive oxygen species: Implications for carcinogenesis and aging

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Reactive oxygen species (ROS) generated by environmental chemicals can cause sequence-specific DNA damage, which may lead to carcinogenesis and aging. We investigated the mechanism of DNA damage by environmental chemicals (catechol, propyl gallate and bisphenol-A), homocysteine and UVA radiation using human cultured cell lines and32P-labeled DNA fragments. Carcinogenic catechol induced piperidine-labile sites frequently at thymine residues in the presence of Cu(II) and NADH. Furthermore, catechol increased the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in human leukemia cell line HL-60, but not in HP100, a hydrogen peroxide (H2O2)-resistant cell line derived from HL-60. Thus, it is concluded that oxidative DNA damage through generation of H2O2 plays an important role in the carcinogenic process of catechol. In addition, an environmental factor, bisphenol-A, and a dietary factor, propyl, gallate, also induced sequence-specific DNA damage via ROS generation.

UVA, as well as UVB, contributes to photoaging. In humans, telomere shortening is believed to be associated with cell senescence. In this study, we investigated the shortening rate of telomeres in human WI-38 fibroblasts exposed to UVA irradiation. The telomere length (as measured by terminal restriction fragment length) in WI-38 fibroblasts irradiated with UVA decreased with increasing the irradiation dose. UVA irradiation with riboflavin caused damage specifically at the GGG sequence in the DNA fragments containing telomere sequence (TTAGGG)4. We concluded that the GGG-specific damage in telomere sequence induced by UVA irradiation participates in the increase of the telomere shortening rate.

In this report, we show our experimental results and discuss the mechanisms of sequence-specific DNA damage in relation to carcinogenesis and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

8-oxodG:

8-oxo-7,8-dihydro-2′-deoxyguanosine (also known as 8-hydroxy-2′-deoxyguanosine)

ROS:

reactive oxygen species

O2 :

superoxide radical anion

OH:

hydroxyl radical

H2O2 :

hydrogen peroxide

1O2 :

singlet oxygen

HPLC-ECD:

electrochemical detector coupled to high-performance liquid chromatography

PG:

propyl gallate

GA:

gallic acid

BPA:

bisphenol-A

3-OH-BPA:

3-hydroxybisphenol A

References

  1. Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem. 2001; 8: 773–796.

    PubMed  CAS  Google Scholar 

  2. Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med. 2003; 54: 131–152.

    Article  PubMed  CAS  Google Scholar 

  3. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002; 27: 339–344.

    Article  Google Scholar 

  4. von Zglinicki T, Petrie J, Kirkwood TB. Telomere-driven replicative senescence is a stress response. Nat Biotechnol. 2003; 21: 229–230.

    Article  CAS  Google Scholar 

  5. Xu D, Neville R, Finkel T. Homocysteine accelerates endothelial cell senescence. FEBS Lett. 2000; 470: 20–24.

    Article  PubMed  CAS  Google Scholar 

  6. Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem. 1999; 274: 962–971.

    Article  PubMed  CAS  Google Scholar 

  7. Kawanishi S, Hiraku Y, Murata M, Oikawa S. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med. 2002; 32: 822–832.

    Article  PubMed  CAS  Google Scholar 

  8. Oikawa S, Kawanishi S. Distinct mechanisms of site-specific DNA damage induced by endogenous reductants in the presence of iron(III) and copper(II). Biochim Biophys Acta. 1998; 1399: 19–30.

    PubMed  CAS  Google Scholar 

  9. Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res. 2001; 488: 65–76.

    Article  PubMed  CAS  Google Scholar 

  10. Ohnishi S, Kawanishi S. Double base lesions of DNA by a metabolite of carcinogenic benzo[a]pyrene. Biochem Biophys Res Commun. 2002; 290: 778–782.

    Article  PubMed  CAS  Google Scholar 

  11. Kawanishi S, Hiraku Y. Sequence-specific DNA damage induced by UVA radiation in the presence of endogenous and exogenous photosensitizers. Curr Probl Dermatol. 2001; 29: 74–82.

    Article  PubMed  CAS  Google Scholar 

  12. Hirakawa K, Yoshida M, Oikawa S, Kawanishi S. Base oxidation at 5′ site of GG sequence in double-stranded DNA induced by UVA in the presence of xanthone analogues: relationship between the DNA-damaging abilities of photosensitizers and their HOMO energies. Photochem Photobiol. 2003; 77: 349–355.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshie Y, Ohshima H. Nitric oxide synergistically enhances DNA strand breakage induced by polyhydroxyaromatic compounds, but inhibits that induced by the Fenton reaction. Arch Biochem Biophys. 1997; 342: 13–21.

    Article  PubMed  CAS  Google Scholar 

  14. Finkelstein MM. Leukemia after exposure to benzene: temporal trends and implications for standards. Am J Ind Med. 2000; 38: 1–7.

    Article  PubMed  CAS  Google Scholar 

  15. Powley MW, Carlson GP. Cytochrome P450 isozymes involved in the metabolism of phenol, a benzene metabolite. Toxicol Lett. 2001; 125: 117–123.

    Article  PubMed  CAS  Google Scholar 

  16. Hirose M, Fukushima S, Tanaka H, Asakawa E, Takahashi S, Ito N. Carcinogenicity of catechol in F344 rats and B6C3F1 mice. Carcinogenesis. 1993; 14: 525–529.

    Article  PubMed  CAS  Google Scholar 

  17. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, France, 17–24 February 1998. IARC Monogr Eval Carcinog Risks Hum. 1999; 71 Pt 1: 1–315.

  18. Kasugai I, Yamada M. High production of catalase in hydrogen peroxide-resistant human leukemia HL-60 cell lines. Leuk Res. 1992; 16: 173–179.

    Article  PubMed  CAS  Google Scholar 

  19. Bruner SD, Norman DP, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000; 403: 859–866.

    Article  PubMed  CAS  Google Scholar 

  20. Miller H, Prasad R, Wilson SH, Johnson F, Grollman AP. 8-oxodGTP incorporation by DNA polymerase beta is modified by active-site residue Asn279. Biochemistry. 2000; 39: 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  21. Sagripanti JL, Goering PL, Lamanna, A. Interaction of copper with DNA and antagonism by other metals. Toxicol Appl Pharmacol. 1991; 110: 477–485.

    Article  PubMed  CAS  Google Scholar 

  22. Malaisse WJ, Hutton JC, Kawazu S, Herchuelz A, Valverde I, Sener A. The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia. 1979; 16: 331–341.

    Article  PubMed  CAS  Google Scholar 

  23. Theophanides T, Anastassopoulou J. Copper and carcinogenesis. Crit Rev Oncol Hematol. 2002; 42: 57–64.

    Article  PubMed  CAS  Google Scholar 

  24. Hirakawa K, Oikawa S, Hiraku Y, Hirosawa I, Kawanishi S. Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. Chem Res Toxicol. 2002; 15: 76–82.

    Article  PubMed  CAS  Google Scholar 

  25. Oikawa S, Hirosawa I, Hirakawa K, Kawanishi S. Site specificity and mechanism of oxidative DNA damage induced by carcinogenic catechol. Carcinogenesis. 2001; 22: 1239–1245.

    Article  PubMed  CAS  Google Scholar 

  26. Hirose M, Takahashi S, Ogawa K, Futakuchi M, Shirai T, Shibutani M, et al. Chemoprevention of heterocyclic amine-induced carcinogenesis by phenolic compounds in rats. Cancer Lett. 1999; 143: 173–178.

    Article  PubMed  CAS  Google Scholar 

  27. NTP Carcinogenesis Bioassay of Propyl Gallate (CAS No. 121-79-9) in F344/N Rats and B6C3F1 Mice (Feed Study). Natl Toxicol Program Tech Rep. Ser. 1982: 240: 1–152.

  28. Miyauchi M, Nakamura H, Furukawa F, Son HY, Nishikawa A, Hirose M. Promoting effects of combined antioxidant and sodium nitrite treatment on forestomach carcinogenesis in rats after initiation with N-methyl-N′-nitro-N-nitrosoguanidine. Cancer Lett. 2002; 178: 19–24.

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa Y, Nakajima K, Tayama S, Moldeus P. Metabolism and cytotoxicity of propyl gallate in isolated rat hepatocytes: effects of a thiol reductant and an esterase inhibitor. Mol Pharmacol. 1995; 47: 1021–1027.

    PubMed  CAS  Google Scholar 

  30. Kobayashi H, Oikawa S, Hirakawa K, Kawanishi S. Metal-mediated oxidative damage to cellular and isolated DNA by gallic acid, a metabolite of antioxidant propyl gallate. Mutat Res. 2004; 558: 111–120.

    PubMed  CAS  Google Scholar 

  31. Carcinogenesis Bioassay of Bisphenol A (CAS No. 80-05-7) in F344 Rats and B6C3F1 Mice (Feed Study). Natl Toxicol Program Tech Rep Ser. 1982; 215: 1–116.

  32. Huff J. Carcinogenicity of bisphenol-A in Fischer rats and B6C3F1 mice. Odontology. 2001; 89; 12–20.

    Article  PubMed  CAS  Google Scholar 

  33. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of huan cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004; 14: 501–513.

    Article  PubMed  CAS  Google Scholar 

  34. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003; 361: 393–395.

    Article  PubMed  CAS  Google Scholar 

  35. Baird DM, Rowson J, Wynford-Thomas D, Kipling D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet. 2003; 33: 203–207.

    Article  PubMed  CAS  Google Scholar 

  36. Berneburg M, Grether-Beck S, Kurten V, Ruzicka T, Briviba K, Sies H, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem. 1999; 274: 15345–15349.

    Article  PubMed  CAS  Google Scholar 

  37. Hiraku Y, Kawanishi S. Distinct mechanisms of guanine-specific DNA photodamage induced by nalidixic acid and fluoroquinolone antibacterials. Arch biochem Biophys. 2000; 382: 211–218.

    Article  PubMed  CAS  Google Scholar 

  38. Ito K, Kawanishi S. Site-specific DNA damage induced by UVA radiation in the presence of endogenous photosensitizer. Biol Chem. 1997; 378: 1307–1312.

    PubMed  CAS  Google Scholar 

  39. Tada-Oikawa S, Oikawa S, Kawanishi S. Role of ultraviolet A-induced oxidative DNA damage in apoptosis via loss of mitochondrial membrane potential and caspase-3 activation. Biochem Biophys Res Commun. 1998; 247: 693–696.

    Article  PubMed  CAS  Google Scholar 

  40. David-Cordonnier MH, Laval J, O’Neill P. Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins. J Biol Chem. 2000; 275: 11865–11873.

    Article  PubMed  CAS  Google Scholar 

  41. Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004; 1019: 278–284.

    Article  PubMed  CAS  Google Scholar 

  42. Oikawa S, Tada-Oikawa S, Kawanishi S. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry. 2001; 40: 4763–4768.

    Article  PubMed  CAS  Google Scholar 

  43. Schwammenthal Y, Tanne D. Homocysteine, B-vitamin supplementation, and stroke prevention: from observational to interventional trials. Lancet Neurol. 2004; 3: 493–495.

    Article  PubMed  Google Scholar 

  44. Kark JD, Selhub J, Bostom A, Adler B, Rosenberg IH. Plasma homocysteine and all-cause mortality in diabetes. Lancet. 1999; 353: 1936–1937.

    Article  PubMed  CAS  Google Scholar 

  45. Schneede J, Refsum H, Ueland PM. Biological and environmental determinants of plasma homocysteine. Semin Thromb Hemost. 2000; 26: 263–279.

    Article  PubMed  CAS  Google Scholar 

  46. Thomson SW, Heimburger DC, Cornwell PE, Turner ME, Sauberlich HE, Fox LM, et al. Correlates of total plasma homocysteine: folic acid, copper, and cervical dysplasia. Nutrition. 2000; 16: 411–416.

    Article  PubMed  CAS  Google Scholar 

  47. Wu LL, Wu JT. Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta. 2002; 322: 21–28.

    Article  PubMed  CAS  Google Scholar 

  48. Mattson MP. Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med. 2003; 139: 441–444.

    PubMed  CAS  Google Scholar 

  49. Oikawa S, Murakami K, Kawanishi S. Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis. Oncogene. 2003; 22: 3530–3538.

    Article  PubMed  CAS  Google Scholar 

  50. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991; 349: 431–434.

    Article  PubMed  CAS  Google Scholar 

  51. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate, telomere shortening. FEBS Lett. 1999; 453: 365–368.

    Article  PubMed  CAS  Google Scholar 

  52. Roldan-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, et al. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci USA. 1997; 94: 8016–8020.

    Article  PubMed  CAS  Google Scholar 

  53. Satyanarayana A, Wiemann SU, Buer J, Lauber J, Dittmar KE, Wustefeld T, et al. Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. Embo J. 2003; 22: 4003–4013.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Oikawa.

Additional information

This article is based upon the research that was given Encouragement Award at the 74th Annual Meeting of the Japanese Society for Hygiene held in Tokyo, Japan on March 24–27, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oikawa, S. Sequence-specific DNA damage by reactive oxygen species: Implications for carcinogenesis and aging. Environ Health Prev Med 10, 65–71 (2005). https://doi.org/10.1007/BF02897995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897995

Key words

Navigation