Skip to main content
Log in

Genetic and environmental factors affecting peak bone mass in premenopausal Japanese women

  • Original Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

The purpose of this study was to examine the relationships between peak bone mass and genetic and environmental factors. We measured whole-body bone mineral density (BMD), lumbar spine BMD, and radius BMD with dual-energy X-ray absorptiometry (DXA) and analyzed eight genetic factors: vitamin D receptor (VDR)-3′, VDR-5′, estrogen receptor (ER), calcitonin receptor (CTR), parathyroid hormone (PTH), osteocalcin (OC), apolipoprotein E (ApoE), and fatty acid binding protein 2 (FABP2) allelic polymorphisms using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs). We also surveyed menstrual history, food intake, and history of physical activity using questionnaires.

After adjusting for age, body mass index (BMI), current smoking status, current Ca intake, alcohol intake, menoxenia, and physical activity, the mean BMD in subjects with the HH/Hh genotype was significantly higher than that of subjects with the hh genotype for whole-body BMD (mean±SD, 1.20±0.10 vs. 1.18±0.09 g/cm2; HH/Hh vs. hh, p=0.04) and at lumbar spine BMD (mean±SD, 1.18±0.14 vs. 1.14±0.12 g/cm2; HH/Hh vs. hh, p=0.02) in OC allelic polymorphism. Furthermore, the results of multiple regression analyses taking the 8 genetic factors plus the 7 environmental factors listed above into account showed that the strongest factor contributing to BMD was BMI at any site (whole-body and lumbar BMD p<0.0001, radius BMD p=0.0029). In addition, OC polymorphism (p=0.0099), physical activity (p=0.0245), menoxenia (p=0.0384), and PTH polymorphism (p=0.0425) were independent determinants for whole-body BMD, and OC polymorphism (p=0.0137) and physical activity (p=0.0421) were independent determinants for lumbar BMD and radius BMD, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riggs BL, Melton III LJ. Involutional osteoporosis. N. Engl. J. Med., 1986; 314: 1676–1686.

    PubMed  CAS  Google Scholar 

  2. Yamagata Z, Miyamura T, Iijima S, Asaka A, Sasaki M, Kato J, Koizumi K. Vitamin D receptor gene polymorphism and bone mineral density in healthy Japanese women. Lancet 1994; 344: 1027.

    Article  PubMed  CAS  Google Scholar 

  3. Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J. Bone Miner. Res., 1996; 11: 1850–1855.

    PubMed  CAS  Google Scholar 

  4. Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J. Bone Miner. Res., 1996; 11: 306–311.

    Article  PubMed  CAS  Google Scholar 

  5. Masi L, Becherini L, Gennari L, Colli E, Mansani R, Falchetti A, Cepollaro C, Gonnelli S, Tanini A, Brandi ML. Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochem. Biophys. Res. Commun. 1998; 245: 622–626.

    Article  PubMed  CAS  Google Scholar 

  6. Hosoi T, Miyao M, Inoue S, Hoshino S, Shiraki M, Orimo H, Ouchi Y. Association study of parathyroid hormone gene polymorphism and bone mineral density in Japanese postmenopausal women. Calcif. Tissue Int. 1999; 64: 205–208.

    Article  PubMed  CAS  Google Scholar 

  7. Dohi Y, Iki M, Ohgushi H, Gojo S, Tabata S, Kajita E, Nishino H Yonemasu K. A novel polymorphism in the promoter region for the human osteocalcin gene: The possibility of a correlation with bone mineral density in postmenopausal Japanese women. J. Bone Miner. Res. 1998; 13: 1633–1639.

    Article  PubMed  CAS  Google Scholar 

  8. Shiraki M, Shiraki Y, Aoki C, Hosoi T, Ineue S, Kaneki M, Ouchi Y. Association of Bone Mineral Density with Apolipoprotein E Phenotype. J. Bone Miner Res. 1997; 12: 1438–1445.

    Article  PubMed  CAS  Google Scholar 

  9. Miyao M, Hosoi T, Inoue S, Hoshino S, Shiraki M, Orimo H, Ouchi Y. Polymorphism of insulin-like growth factor I gene and bone mineral density. Calcif. Tissue. Int. 1998; 63: 306–311.

    Article  PubMed  CAS  Google Scholar 

  10. Yamada Y, Hosoi T, Makimoto F, Tanaka H, Seino Y, Ikeda K. Transforming growth factor beta-1 gene polymorphism and bone mineral density in Japanese adolescents. Am. J. Med. 1999; 106: 477–479.

    Article  PubMed  CAS  Google Scholar 

  11. Keen RW, Woodford Richens KL, Grant SF, Ralston SH, Lanchbury JS, Spector TD. Association of polymorphism at the type I collagen (COL1A1) Iocus with reduced bone mineral density, increased fracture risk, and increased collagen turnover. Arthritis Rheum. 1999; 42: 285–290.

    Article  PubMed  CAS  Google Scholar 

  12. Murray RE, McGuigan F, Grant SF, Reid DM, Ralston SH. Polymorphisms of the interleukin-6 gene are associated with bone mineral density. Bone 1997; 21: 89–92.

    Article  PubMed  CAS  Google Scholar 

  13. Tsuji S, Munkhbat B, Hagihara M, Tsuritani I, Abe H, Tsuji K. HLA-A*24-B*07-DRB1*01 haplotype implicated with genetic disposition of peak bone mass in healthy young Japanese women. Hum. Immunol. 1998; 59: 243–249.

    Article  PubMed  CAS  Google Scholar 

  14. Ogawa S, Urano T, Hosoi T, Miyao M, Hoshino S, Fujita M, Shiraki M, Orimo H, Ouchi Y, Inoue S. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor γ gene: PPAR γ expression in osteoblasts. Biochem. Biophys. Res. Cummun. 1999; 260: 127–130.

    Article  Google Scholar 

  15. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of vitamin D receptor alleles. Nature 1994; 367: 284–287.

    Article  PubMed  CAS  Google Scholar 

  16. Yaich L, Dupont WD, Cavener DR, Parl FF. Analysis of thePvull restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res. 1992; 52: 77–83.

    PubMed  CAS  Google Scholar 

  17. Nakamura M, Zhang ZQ, Shan L, Hisa T, Sasaki M, Tsukino R. Yokoi T, Kaname A, Kakudo K. Allelic variants of human calcitonin receptor in the Japanese population. Hum. Genet. 1997; 99: 38–41.

    Article  PubMed  CAS  Google Scholar 

  18. Tsukamoto K, Watanabe T, Matsushima T, Kinoshita M, Kato H, Hashimoto Y, Kurokawa K, Teramoto T. Determination by PCR-RFLP of apo E genotype in a Japanese population. J. Lab. Clin. Med. 1993; 121: 598–602.

    PubMed  CAS  Google Scholar 

  19. Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J. Clin. Invest. 1995; 95: 1281–1287.

    Article  PubMed  CAS  Google Scholar 

  20. Fujita Y, Katsumata K, Unno A, Tokita A. Factors affecting peak bone density in Japanese women. Calcif. Tissue Int. 1999; 64: 107–111.

    Article  PubMed  CAS  Google Scholar 

  21. Health and Welfare Statistics Association eds. Journal of Health and Welfare Statistics, vol 46 (9): Tokyo; Health and Welfare Statistics Association, 1996.

    Google Scholar 

  22. Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J. Bone Miner. Res. 1997; 12: 915–921.

    Article  PubMed  CAS  Google Scholar 

  23. Lian JB, Friedman PA. The vitamin K-dependent synthesis of γ-carboxyglutamic acid by bone microsomes. J. Biol. Chem. 1978; 253: 6623–6626.

    PubMed  CAS  Google Scholar 

  24. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. J. Clin. Invest 1987; 80: 706–710.

    Article  PubMed  CAS  Google Scholar 

  25. Hara S, Yanagi H, Amagai H, Endoh K, Tsuchiya S, Tomura S. The effect of physical activity during the teenage years, based on type of sports and duration of exercise, on bone mineral density of young, premenopausal Japanese women. Calcif. Tissiue Int. 2001; 68: 23–30.

    Article  CAS  Google Scholar 

  26. Nishimoto SK and Price PA. Secretion of the vitamin K-dependent protein of bone by rat osteosarcoma cells. J. Biol. Chem. 1980; 255: 6579–6583.

    PubMed  CAS  Google Scholar 

  27. Gross C, Krishnan AV, Malloy PJ, Eccleshall TR, Zhao X, Feldman D. The vitamin D receptor gene start codon polymorphism: A functional analysis ofFokI Variants. J. Bone Miner. Res. 1998; 13: 1691–1699.

    Article  PubMed  CAS  Google Scholar 

  28. Yanagi H, Tomura S, Kawanami K, Hosokawa M, Tanaka M, Kobayashi K, Tsuchiya S, Amagai H, Hayashi K, Hamaguchi H. Vitamin D receptor gene polymorphisms are associated with osteoporosis in Japanese women. J. Clin. Endocrinol. Metab. 1996; 81: 4179–4181.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisako Yanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayakawa, Y., Yanagi, H., Hara, S. et al. Genetic and environmental factors affecting peak bone mass in premenopausal Japanese women. Environ Health Prev Med 6, 177–183 (2001). https://doi.org/10.1007/BF02897967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897967

Key words

Navigation