Skip to main content
Log in

Correlation between saliva glycated and blood glycated proteins

  • Original Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Objectives

Blood and saliva samples were obtained to examine if there is a correlation between saliva glycated protein and blood glycated protein.

Methods

Blood and saliva samples of 51 male workers were collected. The fructosamine and hydrazine methods were used to measure saliva glycated protein. HbA1c, fructosamine and blood glucose were measured as indices of blood glycated protein, and the correlation between blood glycated protein and saliva glycated protein was examined.

Results

Saliva fructosamine glycated protein showed a significant correlation with HbA1c and blood glucose (r=0.449; p=0.001 and r=0.445; p=0.001, respectively). No correlation was identified between saliva hydrazine glycated protein and the index of blood glycated protein.

Conclusions

Blood glycated protein and blood glucose could be estimated by measuring saliva glycated protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maillard LC. Action des acides amines sur les sucres; formation des melanoidines par voie methodique. C. R. Acad. Sci. Gen. 1912; 154: 66.

    CAS  Google Scholar 

  2. Little RR, Wiedmeyer HM, England JD, Rohlfing CL, Madsen RW, Goldstein DE, et al. International standardization of glycohemoglobin measurements: practical application. Clin. Chem. 1993; 39: 2356.

    PubMed  CAS  Google Scholar 

  3. Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Peterson CM. Tests of glycemia in diabetes. Diabetes Care 1995; 18: 896–909.

    PubMed  CAS  Google Scholar 

  4. Shima K, Ito N, Abe F, Hirota M, Yano M, Yamamoto Y, et al. High-performance liquid chromatographic assay of serum glycated albumin. Diabetologia 1988; 31: 627–631.

    Article  PubMed  CAS  Google Scholar 

  5. Oimomi M, Maeda Y, Hata F, Kitamura Y, Matsumoto S, Hatanaka H, et al. Increased fructose-lysine of hair protein and blood glucose control in diabetic patients. Horm. Metab. Res. 1988; 20: 654–655.

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi K, Igimi H. Glycation index of hair for noninvasive estimation of diabetic control. Biol. Pharm. Bull. 1996; 19: 487–490.

    PubMed  CAS  Google Scholar 

  7. Bakan E, Bakan N. Glycosylation of nail in diabetics: possible marker of long-term hyperglycemia. Clin. Chim. Acta 1985; 147: 1–5.

    Article  PubMed  CAS  Google Scholar 

  8. Delbridge L, Ellis CS, Robertson K, Lequesne LP. Nonenzymatic glycosylation of keratin from the stratum corneum of the diabetic foot. Br. J. Dermatol. 1985; 112: 547–554.

    Article  PubMed  CAS  Google Scholar 

  9. Li YM. Glycation ligand binding motif in lactoferrin. Implications in diabetic infection. Adv. Exp. Med. Biol. 1998; 443: 57–63.

    PubMed  CAS  Google Scholar 

  10. Dodds MW, Yeh CK, Johnson DA. Salivary alterations in type 2 (non-insulin-dependent) diabetes mellitus and hypertension. Community Dent. Oral Epidemiol. 2000; 28: 373–381.

    Article  PubMed  CAS  Google Scholar 

  11. Belce A, Uslu E, Kucur M, Umut M, Ipbuker A, Seymen HO. Evaluation of salivary sialic acid level and Cu−Zn superoxide dismutase activity in type 1 diabetes mellitus. Tohoku J. Exp. Med. 2000; 192: 219–225.

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi K, Yoshimoto K, Hirauchi K, Uchida K. Determination of glycated proteins in biological samples based on colorimetry of 2-keto-glucose released with hydrazine. Biol. Pharm. Bull. 1994; 17: 365–369.

    PubMed  CAS  Google Scholar 

  13. Morimoto K. Lifestyle and health. Japanese Journal of Hygine 2000; 54: 572–591.

    CAS  Google Scholar 

  14. Hagihara A, Morimoto K. Personal health practices and attitudes toward nonsmokers’ legal rights in Japan. Soc. Sci. Med. 1991; 33: 717–721.

    Article  PubMed  CAS  Google Scholar 

  15. Morimoto K. Stress-kiki no yobo-igaku (in Japanese). Tokyo: NHK books; 1997.

    Google Scholar 

  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anat. Biochem. 1976; 72: 248–254.

    Article  CAS  Google Scholar 

  17. SPSS Inc. SPSS Base 10.0 Brief Guide. Chicago: SPSS Inc.: 2000.

    Google Scholar 

  18. Kjellman O. The presence of glucose in gingival exudate and resting saliva of subjects with insulin-treated diabetes mellitus. Sven. Tandlak. Tidskr. 1970; 63: 11–19.

    PubMed  CAS  Google Scholar 

  19. Shannon TL. Blood and saliva glucose levels in relation to gingival health. J. Indian Dent. Assoc. 1973; 45: 299–302.

    PubMed  CAS  Google Scholar 

  20. Forbat LN, Collins RE, Maskell GK, Sonksen PH. Glucose concentrations in parotid fluid and venous blood of patients attending a diabetic clinic. J. R. Soc. Med. 1981; 74: 725–728.

    PubMed  CAS  Google Scholar 

  21. Sandham HJ, Kleinberg I. Utilization of glucose and lactic acid by salivary sediment. Arch. Oral Biol. 1969; 14: 597–602.

    Article  PubMed  CAS  Google Scholar 

  22. Yamaguchi M, Kimura H, Kano Y, Egusa G, Kita J. Individual correlation of blood glucose and saliva glucose. J. Japan Diab. Soc. 1997; 40: 335–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanehisa Morimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamoto, I., Morimoto, K., Takeshita, T. et al. Correlation between saliva glycated and blood glycated proteins. Environ Health Prev Med 8, 95–99 (2003). https://doi.org/10.1007/BF02897922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897922

Key words

Navigation