Skip to main content
Log in

Synthesis of layered LiMnO2 byin situ oxidation-intercalation and a study of the reaction mechanism and electrochemical performance

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Using Mn(OH)2 as precursor, LiOH as lithiating agent and (NH4)2S2O8 as oxidant, layeredo-LiMnO2 was obtained by a novel method—in situ oxidation-intercalation under mild conditions (80 °C). The product was characterized by XRD, ICP, TEM and7Li-NMR. The results reveal that orthorhombic LiMnO2 with high purity and good crystallinity can be obtained by this method. During electrochemical tests, a LiMnO2/Li cell shows an initial reversible capacity of 208 mAh · g−1 and a reversible capacity of 180 mAh · g−1 after 30 cycles at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammundsen, B., Paulsen, J., Novel lithium-ion cathode materials based on layered manganese oxides, Advanced Materials, 2001, 13(12-13): 943–956.

    Article  CAS  Google Scholar 

  2. Bruce, P. G., Armstrong, A. R., Gitzendanner, R. L., New intercalation compounds for lithium batteries: layered LiMnO2, Journal of Materials Chemistry, 1999, 9: 193–198.

    Article  CAS  Google Scholar 

  3. Jang, Y. I., Moorehead, W. D., Chiang, Y. M., Synthesis of the monoclinic and orthorhombic phases of LiMnO2 in oxidizing atmosphere, Solid State Ionics, 2002, 149: 201–207.

    Article  CAS  Google Scholar 

  4. Davidson, I. J., Mcmillan, R. S., Murray, J. J. et al., Lithium-ion cell based on orthorhombic LiMnO2, Journal of Power Sources, 1995, 54: 232–235.

    Article  CAS  Google Scholar 

  5. Pistoia, G., Antonini, A., Zane, D., Synthesis of LiMnO2 and its characterization as a cathode for rechargeable Li cells, Solid State Ionics, 1995, 78: 115–122.

    Article  CAS  Google Scholar 

  6. Armstrong, A. R., Bruce, P. G., Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 1996, 381: 499–500.

    Article  CAS  Google Scholar 

  7. Lu, Y. L., Wei, M., Yang, W. S. et al., Synthesis of layered LiMnO2 by high temperature solid state reaction in air and its rule of ion exchange, Chemical Journal of Chinese Universities (in Chinese), 2002, 23(11): 2021–2025.

    CAS  Google Scholar 

  8. Jang, Y. I., Huang, B. Y., Wang, H. F. et al., Electrochemical cycling-induced spinel formation in high-charge-capacity orthorhombic LiMnO2, Journal of Electrochemical Society, 1999, 146(9): 3217–3223.

    Article  CAS  Google Scholar 

  9. Mitsuharu, T., Kazuaki, A., Hironori, K. et al., Synthesis of LiMnO2 with α-NaMnO2-type structure by a mixed-alkaline hydrothermal reaction, Journal of Electrochemical Society, 1998, 145(4): L49-L52.

    Article  Google Scholar 

  10. Myung, S. T., Komaba, S., Kumagai, N., Orthorhombic LiMnO2 as a high capacity cathode for lithium-ion battery synthesized by hydrothermal route at 170 °C, Chemistry Letters, 2001: 80–81.

  11. Yoshiaki, N., Masatoshi, N., Hajime, M. et al., Synthesis and reaction mechanism of 3 V LiMnO2, Journal of Power Sources, 1999, 81-82: 49–53.

    Article  Google Scholar 

  12. Reimers, J. N., Fuller, E. W., Rossen, E. et al., Synthesis and electrochemical studies of LiMnO2 prepared at low temperatures, Journal of Electrochemical Society, 1993, 140(12): 3396–3401.

    Article  CAS  Google Scholar 

  13. Jang, Y. I., Wang, H. F., Chiang, Y. M., Room-temperature synthesis of monodisperse mixed spinel (CoxMn1-x)3O4 powder by a coprecipitation method, Journal of Materials Chemistry, 1998, 8: 2761–2764.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Duan.

About this article

Cite this article

Li, X., Yang, W., Evans, D.G. et al. Synthesis of layered LiMnO2 byin situ oxidation-intercalation and a study of the reaction mechanism and electrochemical performance. Chin.Sci.Bull. 50, 213–214 (2005). https://doi.org/10.1007/BF02897529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897529

Keywords

Navigation