Skip to main content
Log in

Adsorption refrigeration-green cooling driven by low grade thermal energy

  • Review
  • Published:
Chinese Science Bulletin

Abstract

As a type of environmental benign refrigeration technology powered by low grade thermal energy, adsorption refrigeration have aroused more and more attention in recent years. In this paper, the research frontiers of adsorption refrigeration, including adsorbent, adsorption theory, heat recovery process, technology of adsorber, the research achievements, and the development achievements, are summarized. Typical systems for adsorption refrigeration research facing to applications in the recent years are presented. Future applications of adsorption refrigeration are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, R. Z., Wu, J. Y., Dai, Y. J. et al, Adsorption refrigeration (in Chinese), Beijing: Mechanical Industry Press. 2002.

    Google Scholar 

  2. Hulse, G. E., Refroidissement d’un wagon frigorifique a marchandises par un system a adsrption utilisant le gel de silice, Revue Gen Froid, 1929, 10: 281–284.

    Google Scholar 

  3. Plank, R., Kuprianoff, J., In die Kleinltemaschin, Berlin: SpringerVerlag, 1960.

    Google Scholar 

  4. Meunier, F., Kaushik, S. C., Neveu, P. et al., A comparative thermodynamic study of sorption systems: second law analysis, International Journal of Refrigeration, 1996, 19(6): 414–421.

    Article  Google Scholar 

  5. Shelton, S., Miles, D., Solid/vapor thermally driven heat pump development, In: Prodeedings of the International Workshop on Research Activities on Advanced Heat Pumps, Austria: Technical University of Graz, 1986, 403–420.

    Google Scholar 

  6. Tchernev, D. I., Emerson, D. T., High-efficiency regenerative zeolite heat pump, ASHRAE Transactions, 1988, 14: 2024–2032.

    Google Scholar 

  7. Jones, J. A., Carbon/ammonia regenerative adsorption heat pump, Proceedings of the International Absorption Heat Pump Conference, ASME, AES, 1993, 31: 449–455.

  8. Miles, D. J., Sanborn, D. M., Nowakowski, G. A. et al., Gas fired sorption heat pump development, Heat Recovery Systems and CHP, 1993, 13(4): 347–351.

    Article  CAS  Google Scholar 

  9. Zheng, W., Worek, W. M., Nowakowski, G., Effect of operating conditions on the performance of two-bed closed cycle solidsorption heat pump systems, Journal of Solar Energy and Engineering, ASME Transactions, 1995, 117, 181–186.

    Article  CAS  Google Scholar 

  10. Sun, L. M., Ben, A. N., Meunier, F., Numerical study on coupled heat and mass transfers in an adsorber with ecternal fluid heating, Heat Recovery Systems and CHP, 1995, 15(1): 19–29.

    Article  CAS  Google Scholar 

  11. Critoph, R. E., Gas-fired air conditioning using a carbon-ammonia convective thermal wave cycle, In: Proceedings of the International Absorption Heat Pump Conference, Quebec, Montreal, 1996, 353–360.

  12. Pons, M., Laurent, D., Meunier, F., Experimental temperature fronts for adsorptive heat pump applications, Applied Thermal Engineering, 1996, 16(5): 395–404.

    Article  CAS  Google Scholar 

  13. Istria, S., Castaing-Lasvignottes, J., Neveu, P., Energetic analysis, application field and performance of a new thernochemical sorption cycle: the multisalt system, Applied Thermal Engineering, 1996, 16(11): 875–889.

    Article  CAS  Google Scholar 

  14. Willers, E., Groll, M., Isselhorst, A. et al., Advanced concept of a metal hydride solid sorption device for combined heating and air-conditioning, In: Proceedings of the International Absorption Heat Pump Conference, Quebec, Montreal, 1996, 169–175.

  15. Jones, J., Sorption refrigeration research at JPL/NASA, Heat Recovery Systems and CHP, 1993, 13: 363–372.

    Article  CAS  Google Scholar 

  16. Miles, D., Shelton, S., Design and testing of a solid-sorption heat-pump system, Applied Thermal Engineering, 1996, 16: 389–394.

    Article  CAS  Google Scholar 

  17. Tchernev, D. I., Solar refrigeration utilizing zeolites, In: 14th Inter. Conv. Engng. Conf. Amer. Chem. Soc., 1979: 2070–2074.

  18. Srivastava, N. C., Eames, I. W., A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems. Applied Thermal Engineering 1998, 18: 707–714.

    Article  CAS  Google Scholar 

  19. Yanoma, A., Yoneta, M., Nitta, T. et al., The performance of a large scale metal hydride heat pump, JSME International Journal, 1988, 31(4): 741–747.

    CAS  Google Scholar 

  20. Ron, M., A hydrogen heat pump as a bus air conditioner, Journal of Less-Common Metals, 1984, 104(2): 259–278.

    Article  CAS  Google Scholar 

  21. Valkov, V., Cote, R., Perron, G. et al., Experimentation of a new thermochemical material based on carbon fiber. In: Proceedings of the International Sorption Heat Pump Conference, Germany: Munich, 1999: 239–245.

  22. Mauran, S., Prades, P., Haridon, F. L., Heat and mass transfer in consolidated reaction beds for thermochemical systems, Heat Recovery Systems & CHP, 1993, 13: 315–319.

    Article  CAS  Google Scholar 

  23. Mauran, S., Coudevylle, O., Lu, H. B., Optimization of porous reactive media for solid sorption heat pumps. In: International Absorption Heat Pump Conference, Quebec, Montreal, 1996: 3–8.

  24. Han, J. H., Cho, K. W., Lee, K. H. et al., Characterization of graphite-salt blocks in chemical heat pumps, In: Ab-sorption Heat Pump Conference, Quebec, Montreal, 1996: 67–73.

  25. Mauran, S., Lebrun, M., Prades, P. et al, Active composite and its use as reaction medium, US Patent 5283 219, 1994.

  26. Groll, M., Reaction beds for dry sorption machines, In: Proceedings of Symposium of Solid Sorption Refrigeration, France: Paris, 1992: 208–214.

  27. Wang, L. W., Wang, R. Z., Wu, J. Y., Wang, K., Adsorption performances and refrigeration application of adsorption working pair of CaCl2-NH3, Science in China, Ser. E, 2004, 47(2): 173–185.

    Article  CAS  Google Scholar 

  28. Wang, L. W., Wang, R. Z., Wu, J. Y. et al., Compound adsorbent for adsorptin ice maker on fishing boats, International Journal of Refrigeration, 2004, 27(4): 401–408.

    Article  CAS  Google Scholar 

  29. Critoph, R. E., Performance limitations of adsorption cycles for solar cooling,. Solar Energy, 1997, 14(1): 21–31.

    Google Scholar 

  30. Tamainot, Z. T., Critoph, R. E., Adsorption refrigerator using monolithic carbonammonia pair, International Journal of Refrigeration, 1997, 20(2): 146–155.

    Article  Google Scholar 

  31. Sokoda, A., Suzuki, M., Fundamental study on solar powered adsorption cooling system, Journal of Chemical Engineering of Japan, 1984, 17(1): 52–57.

    Article  Google Scholar 

  32. Passos, E. F., Escobedo, J. F., Meunier, F., Simulation of an intermittent adsorptive solar cooling system, Solar Energy, 1989, 42(2): 103–111.

    Article  CAS  Google Scholar 

  33. Spinner, B., Rheault, F., Kinetics models in solid/gas reactions under imposed pressure and temperature constraints, In: Proc. of International Workshop on Heat Transformation and Storage, ISPRA, 1985, 9–11.

  34. Mazet, N., Amouroux, M., Spinner, B., Analysis and experimental study of the transformation of non-isothermal solid/gas reacting medium, Chemical Engineering Communication, 1991, 99: 155–174.

    Article  CAS  Google Scholar 

  35. Lebrun, M., Models of heat and mass transfers in solid/gas reactor used as chemical heat pumps, Chemical Engineering Science, 1990, 45: 1743–1753.

    Article  CAS  Google Scholar 

  36. Tykodi, R. J., Thermodynamics of steady state resistance change transitions in steady-state systems, Bulletin of the Chemical Society of Japan, 1979, 552(2): 564–568.

    Article  Google Scholar 

  37. Flanagan, T. B., Hydrides for Energy Storage, England: Oxford Press, 1978, 135.

    Google Scholar 

  38. Goetz, V., Marty, A., A model for reversible solid/gas reactions submitted to temperature and pressure constraints; simulation of the rate of reaction in solid gas reactors used in chemical heat pump, Chemical Engineering Science, 1992, 47(17-18): 4445–4454.

    Article  CAS  Google Scholar 

  39. Neveu, P., Castaing-Lasvignottes, J., Development of a numerical sizing tool for a solid-gas thermochemical transformer I—impact of the microscopic process on the dynamic behaviour of a solid-gas reactor, Applied Thermal Engineering, 1997. 17(6): 501–518.

    Article  CAS  Google Scholar 

  40. Huang, H. J., Wu, G. B., Yang, J. et al., Modeling of gas-solid chemisorption in chemical heat pumps, Separation and Purification Technology, 2004, 34: 191–200.

    Article  CAS  Google Scholar 

  41. Meunier, F., Solid sorption heat powered cycles for cooling and heat pumping applications, Applied Thermal Engineering, 1998, 18: 715–729

    Article  CAS  Google Scholar 

  42. Douss, F., Meunier, F., Sun, L. M., Predictive model and experimental results for a two-adsorber solid adsorption heat pump, Industry & Engineering Chemistry Research, 1988, 27: 310–316.

    Article  CAS  Google Scholar 

  43. Douss, N., Meunier, F., Experimental study of cascading adsorption cycles, Chemical Engineering Science, 1989, 44: 225–235.

    Article  CAS  Google Scholar 

  44. Meunier, F., Second law analysis of a solid adsorption heat pump operating on cascade cycles, Heat Recovery Systems, 1985b, 5: 133–141.

    Article  CAS  Google Scholar 

  45. Rockenfeiler, U., Kirol, L., Sarkisian, P. et al., In: Proceedings of “Solid Sorption Refrigeration” Symposium, France: Paris, 1992: 171–177.

  46. Spinner, B., Les transformateurs thermochimiques a ammoniac, In: Proceedings of “Solid Sorption Refrigeration” Symposium, France: Paris, 1992: 163–170.

  47. Saha, B. B., Kashiwagi, T., Performance evaluation of advanced adsorption cycle driven by near-environment temperature waste heat, In: Proceedings of the International Ab-sorption Heat Pump Conference, Quebec, Montreal, 1996: 277–284.

  48. Shelton, S., Solid adsorbent heat pump system, US Patent, 4610 148, 1986.

  49. Critoph, R. E., Gas-fired air conditioning using a carbon-ammonia convective thermal wave cycle, In: Proceedings of the International Absorption Heat Pump Conference, Quebec, Montreal, 1996: 353–360.

  50. Douglas, K., Linking indoor air quality (IAQ), ventilation, moisture control, and desiccants to future air conditioning practices, In: Proceedings of the International Absorption Heat Pump Conference, Quebec, Montreal, 1996: 128–137.

  51. Wang, R. Z., Performance improvement of adsorption heat pump by heat and mass recovery operations, International Journal of Refrigeration, 2001, 24(7): 602–611.

    Article  CAS  Google Scholar 

  52. Coste, C., Mauran, S., Crozat, G., Procede de mise en oeuvre de reaction gaz-solide, US Patent, 4 595 774, 1983.

  53. Mauran, S., Prades, P., Haridon, F. L., Heat and mass transfer in Consolidated reacting beds for thermochemical systems, Heat Recovery Systems, 1993, 13: 315–319.

    Article  CAS  Google Scholar 

  54. Groll, M., Reaction beds for dry sorption machines, In: Proceedings of “Solid Sorption Refrigeration” Symposium, France: Paris, 1992: 225–232.

  55. Wang, L. W., Wu, J. Y., Wang, R. Z. et al., Experimental study of a solidified activated carbonmethanol adsorption ice maker, Applied Thermal Engineering, 2003, 23: 1453–1462.

    Article  CAS  Google Scholar 

  56. Dunne, S., Carousel heat exchanger for sorption cooling process, US Patent, 5 503 222, 1996.

  57. Bou, P., Guilleminot, J. J., Pons, M., Composite actif a structure feuilletee comprenant un agent actif sous forme de granules, French pending patent, 96 12762, 1996.

  58. Vasiliev, L. L., Sorption refrigerators with heat pipe thermal control. In: Proceedings of ICCR’2003, Zhejiang: Hangzhou, 405–415.

  59. Xia, Z. Z., Wang, R. Z., Wu, J. Y. et al., Compound alternate heat pipe reactor powered by waste heat (in Chinese), Chinese Patent 200410018291.3, 2004.

  60. Wang, L. W., Wang, R. Z., Wu, J. Y., Separate heat pipe adsorption ice maker for fishing boats (in Chinese), Chinese Patent 200310108924.5, 2003.

  61. Xia, Z. Z., Wang, R. Z., Wu., J. Y. et al., New type of effective adsorption chiller adopt separate heat pipe (in Chinese), Chinese Patent 200410025398.0, 2003.

  62. Wang, S. G., Wang, R. Z., Wu, J. Y. et al., Experimental results and analysis for adsorption ice-making system with consolidated adsorbent, Adsorption, 2003, 9(4): 349–358.

    Article  CAS  Google Scholar 

  63. Liu, Y. L., Wang, R. Z., Xia, Z. Z., Experimental performance of a silica gel-water adsorption chiller, Applied Thermal Engineering, 2005, 25(2-3): 359–375.

    Article  CAS  Google Scholar 

  64. Liu, Y. F., Wang, R. Z., Pore structure of new composite adsorbent SiO2 xH2O yCaCl2 with high uptake of water from air, Science in China SCI, Ser E, 2003, 46 (5): 551–559.

    Article  CAS  Google Scholar 

  65. Liu, Y. F., Wang, R. Z., Xia, Z. Z., Continuous adsorption system to intake water from air, Journal of Chemical Engineering(in Chinese), 2004, 55(6): 1002–1005.

    CAS  Google Scholar 

  66. Meunier, F., Solid sorption: an alternative to CFC’s, Heat Recovery Systems and CHP, 1993, 13: 289–295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhu Wang.

About this article

Cite this article

Wang, R., Wang, L. Adsorption refrigeration-green cooling driven by low grade thermal energy. Chin.Sci.Bull. 50, 193–204 (2005). https://doi.org/10.1007/BF02897526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897526

Keywords

Navigation