Skip to main content
Log in

Genetic polymorphism of enzymes involved in xenobiotic metabolism and the risk of lung cancer

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Chronic inhalation of cigarette smoke is a major risk factor for the development of lung cancer. It has been suggested that genetic susceptibility may contribute to the risk, because only a small portion of smokers develops the disease. Several polymorphisms that involve the metabolic activation or detoxification of carcinogens derived from cigarette smoke have been found to be associated with lung cancer risk. Many studies have focused on the relation between the distribution of polymorphic variants of different forms of the metabolic enzymes and lung cancer susceptibility. In this respect two groups of genetic polymorphisms of enzymes involved in xenobiotic metabolism, cytochrome P450 (CYP) and glutathione S-transferases (GSTs), have been discussed.CYP multigene superfamily consists of 10 subfamilies (CYP1-CYP10). A positive association between development of lung cancer and the mutant homozygous genotype ofCYP1A1 gene has been reported in several Japanese populations but such an association has not been observed in either Caucasians or African-Americans. The relation betweenCYP2D6 and lung cancer remains conflicting and inconclusive. Several polymorphisms have been identified at theCYP2E1 locus. No definitive link between the polymorphisms ofCYP2E1 and the risk of lung cancer has, however, been identified. The role of otherCYP2 isoforms in lung carcinogenesis has not been sufficiently investigated.GSTs form a superfamily of genes consisting of five distinct families, namedGSTA, GSTM, GSTP, GSTT andGSTS. The role ofGSTM, GSTT1 orGSTP1 polymorphism in modifying the lung cancer risk may be more limited than has been so far anticipated.

Although some genetic polymorphisms discussed here have not shown significant increases/decreases in risk, individuals with differing genotypes may have different susceptibilities to lung cancer. Hopefully, in future studies it will be possible to screen for lung cancer using specific biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Statistics and Information Department, Minister’s Secretariat, Ministry of Health and Welfare. Vital Statistics of Japan 1997. Vol. 1, Tokyo: Health and Welfare Statistics Association, 1999.

    Google Scholar 

  2. Kamataki T. Metabolism of xenobiotics. In: Omura, T., Ishimura, Y., Fuijii-Kuriyama, Y editors. Cytochrome P-450. 2nd Edition. Tokyo; Kodansha Ltd. 1993: 141–158.

    Google Scholar 

  3. Mannervik B, Awasthi YC, Board PG, Hayes JD, Di Ilio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson WR. Nomenclature for human glutathione transferases. Biochem. J. 1992; 282: 305–306.

    PubMed  CAS  Google Scholar 

  4. Meyer DJ, Gilmore KS, Coles B, Dalton K, Hulbert PB, Ketterer B. Structural distinction of rat GSH transferase subunit 10. Biochem. J. 1991; 274: 619.

    PubMed  CAS  Google Scholar 

  5. Mannervik B, Danielson UH. Glutathione transferases stracture and catalytic activity. CRC Crit. Rev. Biochem. 1976; 23: 281–334.

    Google Scholar 

  6. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J. 1994; 300: 271–276.

    PubMed  CAS  Google Scholar 

  7. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev. Biochem. Mol. Biol. 1995; 30: 445–600.

    Article  PubMed  CAS  Google Scholar 

  8. Kiyohara C. Genetic polymorphism of enzymes involved in xenobiotic metabolism and the risk of colorectal cancer. J. Epidemiol. 2000; 10: 349–360.

    PubMed  CAS  Google Scholar 

  9. Kawaiiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P4501A1 gene. FEBS Lett. 1990; 263: 131–133.

    Article  Google Scholar 

  10. Hayashi S, Watanabe J, Nakachi K, Kawajiri K. Genetic linkage of lung cancer-associated Msp1 polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P4501A1 gene. J. Biochem. 1991; 110: 407–411.

    PubMed  CAS  Google Scholar 

  11. Crofts F, Cosma GN, Currie D, Taioli E, Toniolo P, Garte SJ. A novel CYP1A1 gene polymorphism in African-Americans. Carcinogenesis 1993; 14: 1729–1731.

    Article  PubMed  CAS  Google Scholar 

  12. Cascorbi I, Brockmoller J, Roots I. A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res. 1996; 56: 4965–4969.

    PubMed  CAS  Google Scholar 

  13. Kiyohara C, Hirohata T, Inutsuka T. The relationship between aryl hydrocarbon hydroxylase (AHH) activity and polymorphisms of the CYP1A1 gene. Jpn. J. Cancer Res. 1996; 87: 18–24.

    PubMed  CAS  Google Scholar 

  14. Nakachi K, Imai K, Hayashi S, Watanabe J, Kawajiri K. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res. 1991; 51: 5177–5180.

    PubMed  CAS  Google Scholar 

  15. Ikawa S, Uematsu F, Watanabe K, Kimpara T, Osada M, Hossain A, Sagami I, Kikuchi H, Watanabe M. Assessment of cancer susceptibility in humans by use of genetic polymorphisms in carcinogen metabolism. Pharmacogenetics 1995; 5: S154-S160.

    Article  PubMed  Google Scholar 

  16. Lin P, Wang SL, Wang HJ, Chen KW, Lee HS, Tsai KJ, Chen CY, Lee H. Association of CYP1A1 and microsomal epoxide hydrolase polymorphisms with lung squamous cell carcinoma. Br. J. Cancer 2000; 82: 852–857.

    Article  PubMed  CAS  Google Scholar 

  17. Kim KS, Ryu SW, Kim YJ, Kim E. Polymorphism analysis of the CYP1A1 locus in Koreans: presence of the solitary m2 allele. Mol. Cells 1999; 9: 78–83.

    PubMed  CAS  Google Scholar 

  18. Tefre T, Ryberg D, Haugen A, Nebert DW, Skaug V, Brogger A, Borresen AL. Human CYP1A1 (cytochrome P(1) 450) gene: lack of association between the Msp 1 restriction fragment length polymorphism and incidence of lung cancer in a Norwegian population. Pharmacogenetics 1991; 1: 20–25.

    Article  PubMed  CAS  Google Scholar 

  19. Hirvonen A, Husgafvel-Pursiainen K, Karjalainen A, Anttila S, Vainio H. Point-mutational Msp1 and Ile-Val polymorphisms closely linked in the CYP1A1 gene: lack of association with susceptibility to lung cancer in a Finnish study population. Cancer Epidemiol. Biomark. Prev. 1992; 1: 485–489.

    CAS  Google Scholar 

  20. Shields PG, Caporaso NE, Falk RT, Sugimura H, Trivers GE, Trump BF, Hoover RN, Weston A, Harris CC. Lung cancer, race, and a CYP1A1 genetic polymorphism. Cancer Epidemiol. Biomark. Prev. 1993; 2: 481–485.

    CAS  Google Scholar 

  21. Alexandrie AK, Sundberg MI, Seidegard J, Tornling G, Rannug A. Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study on host factors in relation to age at onset, gender and histological cancer types. Carcinogenesis 1994; 15: 1785–1790.

    Article  PubMed  CAS  Google Scholar 

  22. Drakoulis N, Cascorbi I, Brockmoller J, Gross CR, Roots I. Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889 A to G), and a T to C mutation in the 3′-flanking region. Clin. Invest. 1994; 72: 240–248.

    Article  CAS  Google Scholar 

  23. Jacquet M, Lambert V, Baudoux E, Muller M, Kremers P, Gielen J. Correlation between P450 CYP1A1 inducibility, Mspl genotype and lung cancer incidence. Eur. J. Cancer 1996; 32A: 1701–1706.

    Article  PubMed  CAS  Google Scholar 

  24. Bouchardy C, Wikman H, Benhamou, S, Hirvonen A, Dayer P, Husgafvel-Pursiainen K.CYP1A1 genetic polymorphism, tobacco smoking and lung cancer risk in a French Caucasian population. Biomarkers 1997; 2: 131–134.

    Article  CAS  Google Scholar 

  25. Garcia-Closas M, Kelsey KT, Wiencke JK, Xu X, Wain JC, Christiani DC. A case-control study of cytochrome P450 1A1, glutathione S-transferase M1, cigarette smoking and lung cancer susceptibility (Massachusetts, United States). Cancer Causes Control 1997; 8: 544–553.

    Article  PubMed  CAS  Google Scholar 

  26. Sugimura H, Suzuki I, Hamada GS, Iwase T, Takahashi T, Nagura K, Iwata H, Watanabe S, Kino I, Tsugane S. Cytochrome P-450 1A1 genotype in lung cancer patients and controls in Rio de Janeiro, Brazil. Cancer Epidemiol Biomark. Prev. 1994; 3: 145–148.

    CAS  Google Scholar 

  27. Ishibe N, Wiencke JK, Zuo ZF, McMillan A, Spitz M, Kelsey KT. Susceptibility to lung cancer in light smokers associated with CYP1A1 polymorphisms in Mexican- and African-Americans. Cancer. Epidemiol. Biomark. Prev. 1997; 6: 1075–1080.

    CAS  Google Scholar 

  28. Taioli E, Ford J, Trachman J, Li Y, Demopoulos R, Garte S. Lung cancer risk and CYP1A1 genotype in African Americans. Carcinogenesis 1998; 19: 813–817.

    Article  PubMed  CAS  Google Scholar 

  29. Persson I, Johansson I, Lou YC, Yue QY, Duan LS, Bertilsson L, Ingelman-Sundberg M. Genetic polymorphism of xenobiotic metabolizing enzymes among Chinese lung cancer patients. Int. J. Cancer 1999; 81: 325–329.

    Article  PubMed  CAS  Google Scholar 

  30. Kihara M, Kihara M, Noda K. Risk of smoking for squamous and small cell carcinomas of the lung modulated by combinations of CYP1A1 and GSTM1 gene polymorphisms in a Japanese population. Carcinogenesis 1995; 16: 2331–2336.

    Article  PubMed  CAS  Google Scholar 

  31. Hong YS, Chang JH, Kwon OJ, Ham YA, Choi JH Polymorphism of the CYP1A1 and glutathione-S-transferase gene in Korean lung cancer patients. Exp. Mol. Med. 1998; 30: 192–198.

    PubMed  CAS  Google Scholar 

  32. Kiyohara C, Nakanishi Y, Inutsuka S, et al. The relationship between CYP1A1 aryl hydrocarbon hydroxylase activity and lung cancer in a Japanese population. Pharmacogenetics 1998; 8: 315–323.

    Article  PubMed  CAS  Google Scholar 

  33. London SJ, Daly AK, Fairbrother KS, Holmes C, Carpenter CL, Navidi WC, Idle JR. Lung cancer risk in African-Americans in relation to a race-specific CYP1A1 polymorphism. Cancer Res. 1995; 55: 6035–6037.

    PubMed  CAS  Google Scholar 

  34. Taioli E, Trachman J, Chen X, Toniolo P, Garte SJ. A CYP1A1 restriction fragment length polymorphism is associated with breast cancer in African-American women. Cancer Res. 1995; 55: 3757–3758.

    PubMed  CAS  Google Scholar 

  35. Taioli E, Crofts F, Trachman J, Demopoulos R, Toniolo P, Garte SJ. A specific African-American CYP1A1 polymorphism is associated with adenocarcinoma of the lung. Cancer Res. 1995; 55: 472–473.

    PubMed  CAS  Google Scholar 

  36. Kelsey KT, Wiencke JK, Spitz MR. A race-specific genetic polymorphism in the CYP1A1 gene is not associated with lung cancer in African Americans. Carcinogenesis 1994;15: 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  37. Houlston RS. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics 2000; 10: 105–114.

    Article  PubMed  CAS  Google Scholar 

  38. Kroemer HK, Mikus G, Eichelbaum M. Clinical relationship of pharmacogenetics. In: Kroemer, HK, Mikus G, Eichelbaum M editors. Handbook of Experimental Pharmacology. Berlin; Springer-Verlag, 1994; 265–288.

    Google Scholar 

  39. Woolhouse NM, Andoh B, Mahgoub A, Sloan TP, Idle JR, Smith RL. Debrisoquin hydroxylation polymorphism among Ghanaians and Caucasians. Clin. Pharmacol. Ther. 1979; 26: 584–591.

    PubMed  CAS  Google Scholar 

  40. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of Debrisoquine in man. Lancet 1977; 2: 584–586.

    Article  PubMed  CAS  Google Scholar 

  41. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Acad. Nat. Sci. (USA) 1993; 90: 11825–11829.

    Article  CAS  Google Scholar 

  42. Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Hardwick JP, Meyer UA. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 1988; 331: 442–446.

    Article  PubMed  CAS  Google Scholar 

  43. Skoda RC, Gonzalez FJ, Demierre A, Meyer UA. Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc. Acad. Nat. Sci (USA) 1988; 85: 5240–5243.

    Article  CAS  Google Scholar 

  44. Bertilsson L, Dahl ML, Sjoqvist F, Aberg-Wistedt A, Humble M, Johansson I, Lundqvist E, Ingelman-Sundberg M. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993; 341: 363.

    Article  Google Scholar 

  45. Inaba T, Jurima M, Kalow W. Family studies of mephenytoin hydroxylation deficiency. Am. J. Human Genet. 1986; 38: 768–772.

    CAS  Google Scholar 

  46. Daly AK, Brockmoller J, Broly F, Eichelbaum M, Evans WE, Gonzalez FJ, Huang JD, Idle JR, Ingelman-Sundberg M, Ishizaki T, Jacqz-Aigrain E, Meyer UA, Nebert DW, Steen VM, Wolf CR, Zanger UM. Nomenclature for human CYP2D6 alleles. Pharmacogenetics 1996; 6: 193–201.

    Article  PubMed  CAS  Google Scholar 

  47. Ramachandran S, Lear JT, Ramsay H, Smith AG, Bowers B, Hutchinson PE, Jones PW, Fryer AA, Strange RC. Presentation with multiple cutaneous basal cell carcinomas: association of glutathione S-transferase and cytochrome P450 genotypes with clinical phenotype. Cancer. Epidemiol. Biomark. Prev. 1999; 8: 61–67.

    CAS  Google Scholar 

  48. Laforest L, Wikman H, Benhamou S, Saarikoski ST, Bouchardy C, Hirvonen A, Dayer P, Husgafvel-Pursiainen K. CYP2D6 gene polymorphism in caucasian smokers: lung cancer susceptibility and phenotype-genotype relationships. Eur. J. Cancer 2000; 36: 1825–1832.

    Article  PubMed  CAS  Google Scholar 

  49. Gonzalez FJ. Genetic polymorphism and cancer susceptibility: fourteenth Sapporo Cancer Seminar. Cancer Res. 1995; 55: 710–715.

    PubMed  CAS  Google Scholar 

  50. Nebert DW. Polymorphism of human CYP2D genes involved in drug metabolism: possible relationship to individual cancer risk. Cancer Cells 1991; 3: 93–96.

    PubMed  CAS  Google Scholar 

  51. London SJ, Daly AK, Leathart JB, Navidi WC, Carpenter CC, Idle JR. Genetic polymorphism of CYP2D6 and lung cancer risk in African-Americans and Caucasians in Los Angeles County. Carcinogenesis 1997; 18: 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  52. Sugimura H, Caporaso NE, Shaw GL, Modali RV, Gonzalez FJ. Hoover RN, Resau JH, Trump BE, Weston A, Harris CC. Human debrisoquine hydroxylase gene polymorphisms in cancer patients and controls. Carcinogenesis 1990; 11: 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  53. Roots I, Brockmoller J, Drakoulis N, Loddenkemper R. Mutant genes of cytochrome P-45011D6, glutathione S-transferase class Mu, and arylamine N-acetyltransferase in lung cancer patients. Clin. Invest. 1992; 70: 307–319.

    Article  CAS  Google Scholar 

  54. Wolf CR, Smith CA, Bishop T, Forman D, Gough AC, Spurr NK. CYP2D6 genotyping and the association with lung cancer susceptibility. Pharmacogenetics 1994; 4: 104–106.

    Article  PubMed  CAS  Google Scholar 

  55. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Pelkonen O, Vainio H. PCR-based CYP2D6 genotyping for Finnish lung cancer patients. Pharmacogenetics 1993;3: 19–27.

    Article  PubMed  CAS  Google Scholar 

  56. Agundez JA, Martinez C, Ladero JM, Ledesma MC, Ramos JM, Martin R, Rodriguez A, Jara C, Benitez J. Debrisoquin oxidation genotype and susceptibility to lung cancer. Clin. Pharmacol. Ther. 1994; 55:10–14.

    PubMed  CAS  Google Scholar 

  57. Tefre T, Daly AK, Armstrong M, Leathart JB, Idle JR, Brogger A, Borresen AL. Genotyping of the CYP2D6 gene in Norwegian lung cancer patients and controls. Pharmacogenetics 1994; 4: 47–57.

    Article  PubMed  CAS  Google Scholar 

  58. Rannug A, Alexandrie AK, Persson I, Ingelman-Sundberg M. Genetic polymorphism of cytochromes P450 1A1, 2D6 and 2E1: regulation and toxicological significance. J. Occup. Environ. Med. 1995; 37: 25–36.

    Article  PubMed  CAS  Google Scholar 

  59. Dolzán V, Rudolf Z, Breskvar K. Human CYP2D6 gene polymorphism in Slovene cancer patients and healthy controls. Carcinogenesis 1995; 16: 2675–2678.

    Article  PubMed  Google Scholar 

  60. Stücker I, Cosme J, Laurent P, Cenee S, Beaune P, Bignon J, Depierre A, Milleron B, Hemon D. CYP2D6 genotype and lung cancer risk according to histologic, type and tobacco exposure. Carcinogenesis 1995; 16: 2759–2764.

    Article  PubMed  Google Scholar 

  61. Shaw GL, Falk RT, Frame JN, Weiffenbach B, Nesbitt JC, Pass HI, Caporaso NE, Moir DT, Tucker MA. Genetic polymorphism of CYP2D6 and lung cancer risk. Cancer Epidemiol. Biomark. Prev. 1998; 7: 215–219.

    CAS  Google Scholar 

  62. Legrand M, Stucker I, Marez D, Sabbagh N, Lo-Guidice JM, Broly F. Influence of a mutation reducing the catalytic activity of the cytochrome P450 CYP2D6 on lung cancer susceptibility. Carcinogenesis. 1996; 17: 2267–2269.

    Article  PubMed  CAS  Google Scholar 

  63. Katoh T, Higashi K. Ethnic differences of the primary gene defect at the cytochrome P-450 2D6. J. UOEH 1992; 14: 205–209.

    PubMed  CAS  Google Scholar 

  64. Chida M, Yokoi T, Kosaka Y, Chiba K, Nakamura H, Ishizaki T, Yokota J, Kinoshita M, Sato K, Inaba M, Aoki Y, Gonzalez FJ, Kamataki T. Genetic polymorphism of CYP2D6 in the Japanese population. Pharmacogenetics 1999; 9: 601–605.

    Article  PubMed  CAS  Google Scholar 

  65. Amos CJ, Caporaso NE, Western A. Host factors in lung cancer risk: a review of interdisciplinary studies. Cancer Epidemiol. Biomark. Prev. 1992; 1: 505–513.

    CAS  Google Scholar 

  66. Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W, Gelboin HV, Meyer UA, Gonzalez FJ. Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics 1991; 1: 26–32.

    Article  PubMed  CAS  Google Scholar 

  67. Nebert DW. Genes encoding drug-metabolizing enzymes: possible role in human disease. In: Woodhead, AD, Bender MA, Leonad, TC editors. Phenotypic variation in populations: relevance to risk assessment. New York: Plenum Press, 1988: 45–46.

    Google Scholar 

  68. Wrighton SA, Thomas PE, Molowa DT, Haniu M, Shively JE, Maines SL, Watkins PB, Parker G, Mendez-Picon G, Levin W. Characterization of ethanol-inducible human liver N-nitrosodimethylamine demethylase. Biochemistry 1986; 25: 6731–6735.

    Article  PubMed  CAS  Google Scholar 

  69. Yoo JS, Guengerich FP, Yang CS. Metabolism of N-nitrosodialkylamines by human liver microsomes. Cancer Res. 1988; 48: 1499–1504.

    PubMed  CAS  Google Scholar 

  70. Uematsu F, Kikuchi H, Ohmachi T, Sagami I, Motomiya M, Kamataki T, Komori M, Watanabe M. Two common RFLPs of the human CYP2E gene. Nucleic Acids Res. 1991; 19: 2803.

    Article  PubMed  CAS  Google Scholar 

  71. Uematsu F, Kikuchi H, Motomiya M, Abe T, Sagami L, Ohmachi T, Wakui A, Kanamaru R, Watanabe M. Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. Jpn. J. Cancer Res. 1991; 82: 254–256.

    PubMed  CAS  Google Scholar 

  72. Watanabe J, Hayashi S, Nakachi K, Imai K, Suda Y, Sekine T, Kawajiri K. Kawajiri Pstl and Rsal RFLPs in complete linkage disequilibrium at the CYP2E gene. Nucleic Acids Res. 1990; 18: 7194.

    Article  PubMed  CAS  Google Scholar 

  73. Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J. Biochem. 1991; 110: 559–565.

    PubMed  CAS  Google Scholar 

  74. McBride OW, Umeno M, Gelboin HV, Gonzalez FJ. A Taq I polymorphism in the human P450IIE1 gene on chromsome 10 (CYP2E). Nucleic Acids Res. 1987; 15: 10071.

    Article  PubMed  CAS  Google Scholar 

  75. Wang SL, Lee H, Chen KW, Tsai KJ, Chen CY, Lin P. Cytochrome P4502E1 genetic polymorphisms and lung cancer in a Taiwanese population. Lung Cancer 1999; 26: 27–34.

    Article  PubMed  CAS  Google Scholar 

  76. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Vainio H. The human CYP2E1 gene and lung cancer: Dral and Rsal restriction fragment length polymorphisms in a Finnish study population. Carcinogenesis 1993; 14: 85–88.

    Article  PubMed  CAS  Google Scholar 

  77. Persson J, Johansson I, Bergling H, Dahl ML, Seidegard J, Rylander R, Rannug A, Hogberg J, Sundberg MI. Genetic polymorphism of cytochrome P4502E1 in a Swedish population. Relationship to incidence of lung cancer. FEBS Lett. 1993; 319: 207–211.

    Article  PubMed  CAS  Google Scholar 

  78. Kato S, Shields PG, Caporaso NE, Hoover RN, Trump BF, Sugimura H, Weston A, Harris CC. Cytochrome P45011E1 genetic polymorphisms, racial variation, and lung cancer risk. Cancer Res. 1992; 52: 6712–6715.

    PubMed  CAS  Google Scholar 

  79. Stephens EA, Taylor JA, Kaplan N, Yang CH, Hsieh LL, Lucier GW, Bell DA. Ethnic variation in the CYP2E1 gene: polymorphism analysis of 695 African-Americans, European-Americans and Taiwanese. Pharmacogenetics 1994; 4: 184–192.

    Article  Google Scholar 

  80. Watanabe J, Yang JP, Eguchi H, Hayashi S, Imai K, Nakachi K, Kawajiri K. An Rsa, 1 polymorphism in the CYP2E1 gene does not affect lung cancer risk in a Japanese population. Jpn. J. Cancer Res. 1995; 86: 245–248.

    PubMed  CAS  Google Scholar 

  81. Oyama T, Kawamoto T, Mizoue T, Sugio K, Kodama Y, Mitsudomi T, Yasumoto K. Cytochrome P450 2E1 polymorphism as a risk factor for lung cancer: in relation to p53 gene mutation. Anticancer Res. 1997; 17: 583–587.

    PubMed  CAS  Google Scholar 

  82. Ingelman-Sundberg M, Johansson I, Persson I, Yue QY, Dahl ML, Bertilsson L, Sjoqvist F. Gentic polymorphism of cytochrome P450: interethnic differences and relationship to incidence of lung cancer. Pharmacogenetics 1992; 2: 264–271.

    Article  PubMed  CAS  Google Scholar 

  83. Tsutsumi M, Wang JS, Takase S, Takada A. Hepatic messenger RNA contents of cytochrome P4502E1 in patients with different P4502E1 genotypes. Alcohol Alcohol. 1994; 29: s29-s32.

    Google Scholar 

  84. London SJ, Daly AK, Cooper J, Navidi WC, Idle JR. Lung cancer risk in relation to the CYP2E1 Rsa 1 genetic polymorphism among African-Americans and Caucasians in Los Angeles County. Pharmacogenetics 1996; 6: 527–533.

    Article  PubMed  CAS  Google Scholar 

  85. Wu X, Shi H, Jiang H, Kemp B, Hong WK, Delclos GL, Spitz MR. Associations between cytochrome P4502E1 genotype, mutagen sensitivity, cigarette smoking and susceptibility to lung cancer. Carcinogenesis 1997; 18: 967–973.

    Article  PubMed  CAS  Google Scholar 

  86. Seidegard J, De Pierre JW, Birberg W, Pilotti A, Pero RW. Characterization of soluble glutathione transferase activity in resting mononuclear leukocytes from human blood. Biochem. Pharmacol. 1984; 33: 3053–3058.

    Article  PubMed  CAS  Google Scholar 

  87. Seidegard J, DePierre JW, Pero RW. Hereditary interindividual differences in the glutathione transferase activity towards transtilbene oxide in resting human mononuclear leukocytes are due to a particular isozyme(s). Carcinogenesis 1985; 6: 1211–1216.

    Article  PubMed  CAS  Google Scholar 

  88. Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997; 18: 641–644.

    Article  PubMed  CAS  Google Scholar 

  89. Ali-Osman F, Akande OA, Antoun G, Mao J, Boulamwin J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J. Biol. Chem. 1997; 272: 10004–10012.

    Article  PubMed  CAS  Google Scholar 

  90. Zimniak P, Nanduri B, Pikula S, Bandorowicz-Pikula J, Singhal SS, Srivastava SK, Awasthi S, Awasthi YC. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Lur. J. Biochem. 1994; 224: 893–899.

    Article  CAS  Google Scholar 

  91. Board PG, Webb GC, Coggan M. Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13–14. Ann. Hum. Genet. 1989; 53: 205–213.

    Article  PubMed  CAS  Google Scholar 

  92. Yamamura K, Kiyohara C, Nakanishi Y, Takayama K, Hara N. Lung cancer risk and genetic polymorphism at the glutathione S-transferase P1 locus in male Japanese. Fukuoka Acta Med. 2000; 91: 203–206.

    PubMed  CAS  Google Scholar 

  93. McWilliams JE, Sanderson BJ, Harris EL, Richert-Boe KE, Henner WD. Glutathione S-transferase M1 (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol. Biomark. Prevent. 1995; 4: 589–594.

    CAS  Google Scholar 

  94. Houlston RS. Glutathione S-transferase M1 status and lung cancer risk: a meta-analysis. Cancer Epidemiol. Biomark. Prev. 1999; 8: 675–682.

    CAS  Google Scholar 

  95. Seidegard J, Pero RW, Markowitz MM, Roush G, Miller DG, Beattie EJ. Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the susceptibility to lung cancer: a follow up study. Carcinogenesis 1990; 11: 33–36.

    Article  PubMed  CAS  Google Scholar 

  96. Ketterer B, Harris JM, Talaska G, Meyer DJ, Pemble SE, Taylor JB, Lang NP, Kadlubar FF. The human glutathione S-transferase supergene family, its polymorphism, and its effects on susceptibility to lung cancer. Environ. Health Perspect. 1992; 98: 87–94.

    Article  PubMed  CAS  Google Scholar 

  97. Heckbert SR, Weiss NS, Hornung SK, Eaton DL, Motulsky AG. Glutathione S-transferase and epoxide hydrolase activity in human leukocytes in relation to risk of lung cancer and other smoking-related cancers. J. Natl. Cancer Inst. 1992; 84: 414–422.

    Article  PubMed  CAS  Google Scholar 

  98. Zhong S, Howie AF, Ketterer B, Taylor J, Hayes JD, Beckett GJ, Wathen CG, Wolf CR, Spurr NK. Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 1991; 12: 1533–1537.

    Article  PubMed  CAS  Google Scholar 

  99. Nazar-Stewart V, Motulsky AG, Eaton DL, White E, Hornung SK, Leng ZT, Stapleton P, Weiss NS. The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res. 1993; 53: s2313-s2318.

    Google Scholar 

  100. Seidegard J, Pero RW, Miller DG, Beattie EJ. A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis 1986; 7: 751–753.

    Article  PubMed  CAS  Google Scholar 

  101. Lan Q, He X, Costa DJ, Tian L, Rothman N, Hu G, Mumford JL. Indoor coal combustion emissions, GSTM1 and GSTT1 geno-types, and lung cancer risk: a case-control study in Xuan Wei, China. Cancer Epidemiol. Biomark. Prev. 2000; 9: 605–608.

    CAS  Google Scholar 

  102. Kiyohara C, Yamamura K, Nakanishi Y, Takayama K, Hara N. Polymorphism inGSTM1, GSTT1, andGSTP1 and susceptibility to lung cancer in a Japanese population. Asian Pacific J. Cancer Prev. 2000; 1: 293–298.

    Google Scholar 

  103. Spitz MR, Duphorne CM, Detry MA, Pillow PC, Amos CI, Lei L, de Andrade M, Gu X, Hong WK, Wu X. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol. Biomark. Prev. 2000; 9: 1017–1020.

    CAS  Google Scholar 

  104. London SJ, Yuan JM, Chung FL, Gao YT, Coetzee GA, Ross RK, Yu MC. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet 2000; 356: 724–729.

    Article  PubMed  CAS  Google Scholar 

  105. Deakin M, Elder J, Hendrickse C, Peckham D, Baldwin D, Pantin C, Wild N, Leopard P, Bell DA, Jones P, Duncan H, Brannigan K, Alldersea J, Fryer AA, Strange RC. Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. Carcinogenesis 1996; 17: 881–884.

    Article  PubMed  CAS  Google Scholar 

  106. Kelsey KT, Spitz MR, Zuo ZF, Wiencke JK. Polymorphisms in the glutathione S-transferase class mu and theta genes interact and increase susceptibility to lung cancer in minority populations (Texas, United States). Cancer Causes Control 1997; 8: 554–559.

    Article  PubMed  CAS  Google Scholar 

  107. To-Figueras J, Gene M, Gomez-Catalan J, Galan MC, Fuentes M, Ramon JM, Rodamilans M, Huguet E, Corbella J. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) polymorphisms and lung cancer risk among Northwestern Mediterraneans. Carcinogenesis 1997; 18: 1529–1533.

    Article  PubMed  CAS  Google Scholar 

  108. Jourenkova N, Reinikainen M, Bouchardy C, Husgafvel-Pursiainen K, Dayer P, Benhamou S, Hirvonen A. Effects of glutathione S-transferaseGSTM1 andGSTT1 genotypes on lung cancer risk in smokers. Pharmacogenetics 1997; 7: 515–518.

    Article  PubMed  CAS  Google Scholar 

  109. Saarikoski ST, Voho A, Reinikainen M, Anttila S, Karjalainen A, Malaveille C, Vainio H, Husgafvel-Pursiainen K, Hirvonen A. Combined effect of polymorphic GST genes on individual susceptibility to lung cancer. Int. J. Cancer 1998; 77: 516–521.

    Article  PubMed  CAS  Google Scholar 

  110. Anttila S, Hirvonen A, Vainio H, Husgafvel-Pursiainen K, Hayes JD, Ketterer B. Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res. 1993; 53: 5643–5648.

    PubMed  CAS  Google Scholar 

  111. Harris MJ, Coggan M, Langton L, Wilson SR, Board PG. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics 1998; 8: 27–31.

    Article  PubMed  CAS  Google Scholar 

  112. To-Figueras J, Gene M, Gomez-Catalan J, Pique E, Borrego N, Carrasco JL, Ramon J, Corbella J. Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk. Cancer Causes Control 1999; 10: 65–70.

    Article  PubMed  CAS  Google Scholar 

  113. Katoh T, Kaneko S, Takasawa S, Nagata N, Inatomi H, Ikemura K, Itoh H, Matsumoto T, Kawamoto T, Bell DA. Human glutathione S-transferase P1 polymorphism and susceptibility to smoking related epithelial cancer; oral, lung, gastric, colorectal and urothelial cancer. Pharmacogenetics 1999; 9: 165–169.

    Article  PubMed  CAS  Google Scholar 

  114. Kihara M, Kihara M, Noda K. Lung cancer risk of the GSTM1 null genotype is enhanced in the presence of the GSTP1 mutated genotype in male Japanese smokers. Cancer Lett. 1999; 137: 53–60.

    Article  PubMed  CAS  Google Scholar 

  115. Wattenberg LW. Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[alpyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 1987; 8: 1971–1973.

    Article  PubMed  CAS  Google Scholar 

  116. Morse MA, Eklind KI, Amin SG, Hecht SS, Chung FL. Effects of alkyl chain length on the inhibition of NNK-induced lung neoplasia in A/J mice by arylalkyl isothiocyanates. Carcinogenesis 1989; 10: 1757–1759.

    Article  PubMed  CAS  Google Scholar 

  117. Nakachi K, Imai K, Hayashi S, Kawajiri K. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res. 1993; 53: 2994–2999.

    PubMed  CAS  Google Scholar 

  118. Anttila S, Hirvonen A, Husgafvel-Pursiainen K, Karjalainen A, Nurminen T, Vainio H. Combined effect of CYP1A1 inducibility and GSTM1 polymorphism on histological type of lung cancer. Carcinogenesis 1994; 15: 1133–1135.

    Article  PubMed  CAS  Google Scholar 

  119. Le Marchand L, Sivaraman L, Pierce L, Seifried A, Lum A, Wilkens LR, Lau AF. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res. 1998; 58: 4858–48563.

    PubMed  Google Scholar 

  120. Tiano HF, Wang RL, Hosokawa M, Crespi C, Tindall KR, Langenbach R. Human CYP2A6 activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): mutational specificity in the gpt gene of AS52 cells. Carcinogenesis 1994; 15: 2859–2866.

    Article  PubMed  CAS  Google Scholar 

  121. Hadidi H, Zahlsen K, Idle JR, Cholerton S. A single amino acid substitution (leu160His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem. Toxicol. 1997; 35: 903–907.

    Article  PubMed  CAS  Google Scholar 

  122. Rautio A, Gullsten H, Pelkonen O. Expression and function CYP2A genes in humans. Exp. Toxicol. Pathol. 1998; 50: 133–134.

    Google Scholar 

  123. Oscarson M, McLellan RA, Gullsten H, Agundez JA, Benitez J, Rautio A, Raunio H, Pelkonen O, Ingelman-Sundberg M. Identification and characterisation of novel polymorphisms in the CYP2A locus: implications for nicotine metabolism. FEBS Lett. 1999; 460: 321–327.

    Article  PubMed  CAS  Google Scholar 

  124. Oscarson M, McLellan RA, Gullsten H, Yue QY, Lang MA, Bernal ML, Sinues B, Hirvonen A, Raunio H, Pelkonen O, Ingelman-Sundberg M. Characterisation and PCR-based detection of a CYP2A6 gene deletion found at a high frequency in a Chinese population. FEBS Lett. 1999; 448: 105–110.

    Article  PubMed  CAS  Google Scholar 

  125. Chen GF, Tang YM, Green B, Lin DX, Guengerich FP, Daly AK, Caporaso NE, Kadlubar FF. Low frequency of CYP2A6 gene polymorphism as revealed by a one-step polymerase chain reaction method. Pharmacogenetics 1999; 9: 327–332.

    Article  PubMed  CAS  Google Scholar 

  126. Kitagawa K, Kunugita N, Katoh T, Yang M, Kawamoto T. The significance of the homozygous CYP2A6 deletion on nicotine metabolism: a new genotyping method of CYP2A6 using a single PCR-RFLP. Biochem. Biophys. Res. Commun. 1999; 262: 146–151.

    Article  PubMed  CAS  Google Scholar 

  127. Raunio H, Rautio A, Gullsten H, Pelkonen O. Polymorphisms of CYP2A6 and its practical consequences. Br. J. Clin. Pharmacol. 2001; 52: 357–363.

    Article  PubMed  CAS  Google Scholar 

  128. Tan W, Chen GF, Xing DY, Song CY, Kadlubar FF, Lin DX. Frequency of CYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population. Int. J. Cancer 2001; 95: 96–101.

    Article  PubMed  CAS  Google Scholar 

  129. London SJ, Idle JR, Daly AK, Coetzee GA. Genetic variation of CYP2A6, smoking, and risk of cancer. Lancet 1999; 353: 898–899.

    Article  PubMed  CAS  Google Scholar 

  130. Kamataki T, Nunoya K, Sakai Y, Kushida H, Fujita K. Genetic polymorphism of CYP2A6 in relation to cancer. Mutat. Res. 1999; 428: 125–130.

    PubMed  CAS  Google Scholar 

  131. Brian WR, Srivastava PK, Umbenhauer DR, Lloyd RS, Guengerich FP. Expression of a human liver cytochrome P-450 protein with tolbutamide hydroxylase activity in Saccharomyces cerevisiae. Biochemistry 1989; 28: 4993–4999.

    Article  PubMed  CAS  Google Scholar 

  132. Ozawa S, Schoket B, McDaniel LP, Tang YM, Ambrosone CB, Kostic S, Vincze I, Kadlubar FF. Analyses of bronchial bulky DNA adduct levels and CYP2C9, GSTP1 and NQO1 genotypes in a Hungarian study population with pulmonary diseases. Carcinogenesis 1999; 20: 991–995.

    Article  PubMed  CAS  Google Scholar 

  133. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, Goldstein JA. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6: 341–349.

    Article  PubMed  CAS  Google Scholar 

  134. Nasu K, Kubota T, Ishizaki T. Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics 1997; 7: 405–409.

    Article  PubMed  CAS  Google Scholar 

  135. London SJ, Daly AK, Leathart JB, Navidi WC, Idle JR. Lung cancer risk in relation to the CYP2C9*1/CYP2C9*2 genetic polymorphism among African-Americans and Caucasians in Los Angeles County, California. Pharmacogenetics 1996; 6: 527–533.

    Article  PubMed  CAS  Google Scholar 

  136. London SJ, Sullivan-Klose T, Daly AK, Idle JR. Lung cancer risk in relation to the CYP2C9 genetic polymorphism among Caucasians in Los Angeles County. Pharmacogenetics 1997; 7: 401–404.

    Article  PubMed  CAS  Google Scholar 

  137. Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ, Idle JR. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 1995; 5: 389–392.

    Article  PubMed  CAS  Google Scholar 

  138. Srivastava PK, Yun CH, Beaune PH, Ged C, Guengerich FP. Separation of human liver microsomal tolbutamide hydroxylase and (S)-mephenytoin 4′-hydroxylase cytochrome P-450 enzymes. Mol. Pharmacol. 1991; 40: 69–79.

    PubMed  CAS  Google Scholar 

  139. Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, Lasker JM, Ghanayem BI. Evidence that CYP2C19 is the major (S)-mephenytoin 4′-hydroxylase in humans. Biochemistry 1994; 33: 1743–1752.

    Article  PubMed  CAS  Google Scholar 

  140. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 1994; 46: 594–598.

    PubMed  Google Scholar 

  141. Ieiri I, Kubota T, Urae A, Kimura M, Wada Y, Mamiya K, Yoshioka S, Irie S, Amamoto T, Nakamura K, Nakano S, Higuchi S. Pharmacokinetics of omeprazole (a substrate of CYP2C19) and comparison with two mutant alleles. C gamma P2C19m1 in exon 5 and C gamma P2C19m2 in exon 4, in Japanese subjects. Clin. Pharmacol. Ther. 1996; 59: 647–653.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Kiyohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyohara, C., Shirakawa, T. & Hopkin, J.M. Genetic polymorphism of enzymes involved in xenobiotic metabolism and the risk of lung cancer. Environ Health Prev Med 7, 47–59 (2002). https://doi.org/10.1007/BF02897330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897330

Key words

Navigation