Skip to main content
Log in

Lifestyle, stress and cortisol response: Review II

Lifestyle

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

To prevent lifestyle related diseases, it is important to modify lifestyle behavior. The control of mental stress level and prevention of mental stress-related diseases have become one of the most important problems in Japan. To check mental stress level objectively during the early stage of stress-related diseases and determine appropriate coping methods, it is necessary to design a useful index for mental stress. Cortisol is a steroid hormone secreted by the adrenal cortex. This is an essential hormone to human survival, and plays a key role in adaptation to stress. In another review, we concluded that cortisol appears to be an adequate index for mental stress.

However, lifestyle factors such as alcohol drinking, smoking, lack of exercise etc., are strongly associated with mental stress. Thus, in this review, we focus on the relationship between cortisol and lifestyle.

The present findings suggested that lifestyle factors; smoking, alcohol drinking, exercise, sleep and nutrition are strongly associated with cortisol levels, and it may be impossible to determine whether alterations in cortisol levels are due to mental stress.

It was suggested that those lifestyle effects on not only mental stress itself but also cortisol levels should be considered, when assessing mental stress by cortisol levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selye H. A syndrome produced by diverse bicuous agents. Nature 1936; 138: 72.

    Article  Google Scholar 

  2. Brien TC. Free cortisol in human plasma. Horm. Metab. Res. 1980; 12: 643–650.

    PubMed  CAS  Google Scholar 

  3. Slaunwhite WR, Lockie GN, Back N, Sandberg AA. Inactivity in vivo of transcortion-bound cortisol. Science 1962; 135: 1062–1063.

    Article  PubMed  CAS  Google Scholar 

  4. Kirshhbaum C, Hellhammer DH. Salivary cortisol in psychobiological research: an overview. Neuropsychobiology 1989; 22: 150–169.

    Article  Google Scholar 

  5. Simonsick EM. Personal health habits and mental health in national probability sample. Am J. Prev. Med. 1991; 7(6): 425–437.

    PubMed  CAS  Google Scholar 

  6. Paffenbarger RS Jr, Lee IM, Leung R. Physical activity and personal characteristics associated with depression and suicide in American college men. Acta Psychiatr. Scand. 1994; Suppl 377: 16–22.

    Article  Google Scholar 

  7. Ezoe S, Morimoto K. Behavioral lifestyle and mental health status of Japanese factory workers. Preve. Med. 1994; 23: 98–105.

    Article  CAS  Google Scholar 

  8. Kirschbaum C, Wust S, Strasburger CJ. Normal cigarette smoking increases free cortisol in habitual smokers. Life Sci. 1991; 50: 435–442.

    Article  Google Scholar 

  9. Gilbert DG, Meliska CJ, Plath LC. Noise stress does not modulate effects of smoking/nicotine on beta-endorphin, cortisol, ACTH, glucose, and mood. Psychopharmacology-Berl. 1997; 130: 197–202.

    Article  PubMed  CAS  Google Scholar 

  10. Pickworth WB, Baumann MH, Fant RV, Rothman RB, Henningfield JE. Endocrine responses during acute nicotine withdrawal. Pharmacol. Biochem. Behav. 1996; 55: 433–437.

    Article  PubMed  CAS  Google Scholar 

  11. Andersson K, Eneroth P, Arner P. Changes in circulating lipid and carbohydrate metabolites following systemic nicotine treatment in healthy men. Int. J. Obes. Relat. Metab. Disord. 1993; 17: 675–680.

    PubMed  CAS  Google Scholar 

  12. Stalke J, Harder O, Bahr V, Hensen J, Scherer G, Oelkers W. The role of vasopressin in the nicotine induced stimulation of ACTH and cortisol in men. Clin. Investig. 1992; 70: 218–223.

    Article  PubMed  CAS  Google Scholar 

  13. Baron JA, Comi RJ, Cryns V, Brinck-Johnsen T, Merger NG. The effect of cigarette smoking on adrenal cortical hormones. J. Pharmacol. Exp. Ther. 1994; 272: 151–155.

    Google Scholar 

  14. Field AE, Colditz GA, Willett WC, Longcope C, McKinlay JB. The relation of smoking, age, relative weight, and dietary intake to serum adrenal steroids, sex hormones, and sex hormone-binding globulin in middle-aged men. J. Clin. Endocinol. Metab. 1994; 79: 1310–1316.

    Article  CAS  Google Scholar 

  15. Handa K, Kono S, Ishii H, Imanishi K, Arakawa K. Relationship of alcohol consumption and smoking to plasma cortisol and blood pressure. J. Hum. Hypertens. 1994; 8: 891–894.

    PubMed  CAS  Google Scholar 

  16. Haak T, Jungmann E, Raab C, Usadel KH. Elebated endothelin-1 level after cigarette smoking. Metabolism 1994; 43: 267–269.

    Article  PubMed  CAS  Google Scholar 

  17. Gilbert DG, Meliska CJ, Williams CL, Jensen RA. Subjective correlates of cigarette-smoking-induced elevations of peripheral beta-endorphin and cortisol. Psychopharmacology 1992; 106: 275–281.

    Article  PubMed  CAS  Google Scholar 

  18. Seyler E Jr, Fertig J, Pomerleau O, Hunt D, Parker K. The effects of smoking on ACTH and cortisol secretion. Life Sci. 1984; 34: 57–65.

    Article  PubMed  CAS  Google Scholar 

  19. Hautanen A, Manttari M, Kupari M, et al. Cigarette smoking is associated with elevated adrenal androgen response to adrenocorticotropin. J. Steroid Biochem. Molec. Biol. 1993; 46: 245–251.

    Article  PubMed  CAS  Google Scholar 

  20. Meliska CJ, Stunkard ME, Gilbert DG, Jensen RA, Martinko JM. Immune function in cigarette smokers who quit smoking for 31 days. J. Allergy Clin. Immunol. 1995; 95: 901–910.

    Article  PubMed  CAS  Google Scholar 

  21. Frederick SL, Reus VI, Ginsberg D, Hall SM, Munoz RF, Ellman G. Cortisol and response to dexamethasone as predictors of withdrawal distress and abstinence success in smokers. Biol. Psychiatry 1998; 43: 525–530.

    Article  PubMed  CAS  Google Scholar 

  22. Meliska CJ, Gilbert DG. Hormonal and subjective effects of smoking the first five cigarettes of the day: a comparison in males and females. Pharmacol. Biochem. Behav. 1991; 40: 229–235.

    Article  PubMed  CAS  Google Scholar 

  23. Pomerleau CS, Garcia AW, Pomerleau OF, Cameron OG. The effects of menstrual phase and nicotine abstinence on nicotine intake and on biochemical and subjective measures in women smokers: a preliminary report. Psychoneuroendocrinology 1992; 17: 627–638.

    Article  PubMed  CAS  Google Scholar 

  24. Law MR, Cheng R, Hackshaw AK, Allaway S, Hale AK. Cigarette smoking, sex hormones and bone density in women. Eur. J. Epidemiology 1997; 13: 553–558.

    Article  CAS  Google Scholar 

  25. Wand G, Froehlich J. Alterations in hypothlamo-hypophyseal function by ethanol. In: McCleod R, Muller E, eds. New York: Springer-Verlag; Neuroendocrine Perspectives; 1990: 45–122.

    Google Scholar 

  26. River C, Vole W. Interaction between ethanol and stress on ACTH secretion. Alcohol Clin. Exp. Res. 1988; 12: 206–210.

    Article  Google Scholar 

  27. Ida Y, Tsujimaru S, Nakamura K, et al. Effects of acute and repeated alcohol ingestion on hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal functioning in normal males. Drug Alcohol Depend. 1992; 31: 57–64.

    Article  PubMed  CAS  Google Scholar 

  28. Jeffoate WJ, Platts P, Ridout M, Hastings AG, MacDonald I, Selby C. Endocrine effects of ethanol infusion in normal subjects: modification by naloxone. Pharmacol. Biochem. Behav. 1980; 13: 145–148.

    Google Scholar 

  29. Jenkins JS, Connolly J. Adrenocortical response to ethanol in man. Br. Med. J. 1968; 2: 804–805.

    PubMed  CAS  Google Scholar 

  30. Merry J, Marks V. Plasma-hydrocortisone response to ethanol in chronic alcoholics. Lancet 1969; 1: 921–923.

    Article  PubMed  CAS  Google Scholar 

  31. Yikahri RH, Huttunen MO, Harkonen M, Leino M, Lelenius T, Liewendahl K, Karonen S. Acute effects of alcohol on anterior pituitary secretion of the tropic hormoens. J. Clin. Endocrinol. Metab. 1978; 46: 715–720.

    Google Scholar 

  32. Gianoulakis C, Guillaume P, Thavundayi J, Gutkowska J. Increased plasma atrial natriuretic peptide after ingestion of low doses of ethanol. Alcohol Clin. Exp. Res. 1997; 21: 162–170.

    PubMed  CAS  Google Scholar 

  33. Soyka M, Corig E, Naber D. Serum prolactin increase induced by ethanol—a dose-dependent effect not related to stress. Psychoneuroendocrinology 1991; 16: 441–446.

    Article  PubMed  CAS  Google Scholar 

  34. Mendelson JH, Stein S. Serum cortisol levels in alcoholic and non-alcoholic subjects during experimentally induced ethanol intoxication. Psychosom. Med. 1966; 28: 616–626.

    CAS  Google Scholar 

  35. Mendelson JH, Ogata M, Mello NK. Adrenal function and alcoholism 1. Serum cortisol. Psychosom. Med. 1971; 33: 145–157.

    PubMed  CAS  Google Scholar 

  36. Schuckit MA, Risch SC, Gold EO. Alcohol consumption, ACTH level, and family history of alcoholism. Am. J. Psychiatry 1988; 145: 1391–1395.

    PubMed  CAS  Google Scholar 

  37. Schuckit MA, Gold EO, Risch C. Plasma cortisol levels following ethanol in sons of alcoholic and controls. Arch. Gen. Psychiatry 1987; 44: 942–945.

    PubMed  CAS  Google Scholar 

  38. Ireland MA, Vandongen R, Davidson L, Beilin LJ, Rouse IL. Acute effects of moderate alcohol consumption on blood pressure and plasma catecholamines. Clin. Sci. 1984; 66: 643–648.

    PubMed  CAS  Google Scholar 

  39. Del-Arbol JL, Aguirre JC, Raya J, Rico J, Ruiz-Requena ME, Miranda MT. Plasma concentrations of β-endorphin, adrenocoricotropic hormone, and cortisol in drinking and abstinent chronic alcoholics. Alcohol 1995; 12: 525–529.

    Article  PubMed  CAS  Google Scholar 

  40. Ho SB, DeMaster EG, Safer RB, Levine AS, Morley JE, Go VLW, Allen JI. Opiate antagonist nalmefene inhibits ethanol-induced flushing in Asians: A preliminary study. Alcohol Clin. Exp. Res. 1988; 12: 705–712.

    Article  PubMed  CAS  Google Scholar 

  41. Seto A, Tricomi S, Goodwin DW, Kolodney R, Sullivan T. Biochemical correlated of ethanol-induced flushing in Orientals. J. Stud. Alcohol 1978; 39: 1–11.

    PubMed  CAS  Google Scholar 

  42. Goedde HW, Singh S, Agarwal DP, Fritze G, Stapel K, Paik YK. Genotyping of mitochondrial aldehyde dehydrogenase in blood samples using allele-specific oligonucleotides. Hum. Genet. 1989; 81: 305–307.

    Article  PubMed  CAS  Google Scholar 

  43. Schneider BS, Hirsch J. Hypothalamic-pituitary function in obesity. in Contemporary Metabolism, Vol. 2, Freinkel N (Ed), New York. Plenum, 1982; pp. 119–144.

    Google Scholar 

  44. Copinschi G, Delaet MH, Brion JP, Leclercq K, Hermite ML, Robyn V, Viresoro E, Van Canter E. Simultaneous study of cortisol, growth hormone, and prolactin nyctohemeral variations in normal and obese subjects: influence of prolonged fasting in obesity. Clin. Endocrinol. 1978; 9: 15–26.

    Article  CAS  Google Scholar 

  45. Fraser R, Ingram MC, Anderson NH, Morrison C, Davies E, Connell JM. Cortisol effects on body mass, blood pressure, and cholesterol in the general population. Hypertension 1999; 33: 1364–1368.

    PubMed  CAS  Google Scholar 

  46. Pasquali R, Biscotti D, Spinucci G, Vicennati V, Genazzani AD, Sgarbi L, Casimirri F. Pulsatile secretion of ACTH and cortisol in premenopausal women: effect of obesity and body fat distribution. Clin. Endocrinol Oxf. 1998; 45: 603–612.

    Article  Google Scholar 

  47. Andrew R, Phillips DI, Walker BR. Obesity and gender influence cortisol secretion and metabolism in man. J. Clin. Endocrinol. Metab. 1998; 83: 1806–1809.

    Article  PubMed  CAS  Google Scholar 

  48. Yanovski JA, Yanovski SZ, Gold PW, Chrousos GP. Differences in corticotropin-releasing hormone-stimulated adrenocorticotropin and cortisol before and after weight loss. J. Clin. Endocrinol. Metab. 1997; 82: 1874–1878.

    Article  PubMed  CAS  Google Scholar 

  49. Bayliss RIS. Factors influencing adrenocortical activity in health and disease. Br. Med. J. 1955; 1: 495.

    PubMed  CAS  Google Scholar 

  50. Schonla MM, Shanley BC, Loening WEK, Parent MA, Coovadia HM. Plasma-cortisol and immunosuppression in protein-calorie malnutrition. Lancet 1972; Aug 26: 435–437.

    Google Scholar 

  51. Malozowski S, Muzzo S, Burrows R, et al. The hypothalamicpituitary-adrenal axis in infantile malnutrition. Clin. Endocrinol. Oxf. 1990; 32: 461–465.

    Article  PubMed  CAS  Google Scholar 

  52. Alleyne GAO, Young VH. Adrenal function in malnutrition. Lancet 1966; 1: 911.

    Article  PubMed  CAS  Google Scholar 

  53. Tuchinda C, Chatranon W. Blood cortisol levels in malnourished Thai children with and without acute stress. J. Med. Ass. Thailand 1982; 65: 82–85.

    CAS  Google Scholar 

  54. Rao KSJ, Srikantia SG, Gopalan C. Plasma cortisol levels in protein-calorie malnutrition. Arch. Dis. Child 1968; 43: 365–367.

    Google Scholar 

  55. Castellanos H, Arroyave G. Role of the adrenal cortical system in the response of children to severe protein malnutrition. Am. J. Clin. Nutr. 1961; 9: 186.

    PubMed  CAS  Google Scholar 

  56. Cohen MR, Pickar D, Cohen RM, Wise TN, Cooper JN. Plasma cortisol and beta-endorphin immunoreactivity in human obesity. Psychosom. Med. 1984; 46: 454–462.

    PubMed  CAS  Google Scholar 

  57. Bayliss RIS. Factors influencing adrenocortical activity in health and disease. Br. Med. J. 1955; 1: 495.

    Article  PubMed  CAS  Google Scholar 

  58. Saudek CD, Felig P. The metabolic events of starvation. Am. J. Med. 1976; 60: 117–126.

    Article  PubMed  CAS  Google Scholar 

  59. Cahill Jr GF. Starvation in man. Clin. Endocinol. Metab. 1976; 5: 397–415.

    Article  CAS  Google Scholar 

  60. Laundsberg L, Young JB. Fasting, feeding and regulation of the sympathetic nervous system. N. Engl. J. Med. 1978; 298: 1295–1301.

    Google Scholar 

  61. Palmblad J, Levi L, Burger A, et al. Effects of total energy with-drawal (fasting) on the levels of growth hormone, thyrotropin, cortisol, adrenaline, noradrenaline, T4, T3, and rT3 in healthy males. Acta. Med. Scand. 1977; 201: 15–22.

    PubMed  CAS  Google Scholar 

  62. Späth-schualhe E, Uthgenannt D, Voget G, Kern W, Born J, Fehm HL. Corticotropin-releasing hormone-induced adrenocoticotropin and cortisol secretion depends on sleep and wakeness. J. Clin. Endocinol. Metab. 1993; 77: 1170–1173.

    Article  Google Scholar 

  63. Davidson JR, Moldofsky H, Lue FA. Growth hormone and cortisol secretion in relation to sleep and wakefulness. J. Psychiatry Neurosci. 1991; 16: 96–102.

    PubMed  CAS  Google Scholar 

  64. Follenius M, Brandenberger G, Badasept J, Libert J, Ehrhart J. Nocturnal cortisol release in relation to sleep structure. Sleep 1992; 15: 21–27.

    PubMed  CAS  Google Scholar 

  65. Van Cauter E, Turck FW. Endocrine and other biological rhythms. In: DeGroot Lj ed. Endocrinology. Philadelphia: W. B. Saunders. 1994; 2487–2548.

    Google Scholar 

  66. Kobayashi F, Furui H, Akamatsu Y, Watanabe T, Horibe H. Changes in psychophysiological functions during night shift in nurses. Influence of changing from a full-day to a half work shift before night duty. Int. Arch. Occup. Environ. Health 1997; 69: 83–90.

    Article  PubMed  CAS  Google Scholar 

  67. Leproult R, Copinschi G, Buxton O, Cauter EV. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 1997; 20: 865–870.

    PubMed  CAS  Google Scholar 

  68. Akerstedt T, Palmblad J, de la Torre B, Marana R, Gillberg M. Adrenocortical and gonadal steroids during sleep deprivation. Sleep 1980; 3: 23–30.

    PubMed  CAS  Google Scholar 

  69. Kant GJ, Genser SG, Torne DR, Pfalser JL, Mougey EH. Effects of 72 hours sleep deprivation on urinary cortisol and indices of metabolism. Sleep 1984; 7: 142–146.

    PubMed  CAS  Google Scholar 

  70. Horn JA. A review of the biological effects of total sleep deprivation in man. Biol. Psyhol. 1978; 7: 55–102.

    Article  Google Scholar 

  71. Hadramy MS, Zawawi TH, Abdelwahab SM. Altered cortisol levels in relation to Ramadan. Eur. J. Clin. Nutr. 1988; 42: 359–362.

    Google Scholar 

  72. Davis CTM, Few JD. Effects of exercise on adrenocortical function. J. Appl. Physiol. 1973; 35: 887–891.

    Google Scholar 

  73. Sundsfjord JA, Strømme SB, Aakvaag A. Plasma aldosterone (PA), plasma renin activity (PRL) and cortisol (PF) during exercise. Res. Steroids 1975; 6: 133–140.

    CAS  Google Scholar 

  74. Davis CTM, Few JD. Effects of exercise on adrenocortical function. J. Appl. Physiol. 1973; 35: 887–891.

    Google Scholar 

  75. Brandenberger G, Follenius M. Ifluence of timing and intensity of muscular exercise on temporal patterns of plasma cortisol levels. J. Clin. Endocrinol. Metab. 1975; 40: 845–849.

    PubMed  CAS  Google Scholar 

  76. Brandenberger G, Follenius M, Hietter B. Feedback from mealrelated peaks determines diurnal changes in cortisol response to exercise. J. Clin. Endocrinol. Metab. 1982; 54: 592–596.

    PubMed  CAS  Google Scholar 

  77. Farrell PA, Garthwaite TL, Gustafson AB. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J. Appl. Physiol. 1983; 55: 1441–1444.

    PubMed  CAS  Google Scholar 

  78. Gawell MJ, Park DM, Alaghband-Zadeh J, Rose FC. Exercise and hormonal secretion. Postgrand. Med. J. 1979; 55: 373–376.

    Google Scholar 

  79. Schnabel A, Kindermann W, Schmitt WM, Biro SG, Stegmann H. Hormonal and metabolic consequences of prolonged running at the individual anaerobic threshold. Int. J. Sports Med. 1983; 3: 163–168.

    Google Scholar 

  80. Stephenson LA, Kolka MA, Francesconi R, Gonzalez RR. Circadian variations in plasma renin activity, catecholamines and aldosterone during exercise in women. Eur. J. Appl. Physiol. Occup. Physiol. 1989; 58: 756–764.

    Article  PubMed  CAS  Google Scholar 

  81. Cashmore GC, Davis CTM, Few JP. Relationship between increases in plasma cortisol concentrations and rate of cortisol secretion during exercise in man. J. Endocrinol. 1977; 72: 109–110.

    PubMed  CAS  Google Scholar 

  82. Booth A, Shelley G, Mazur A, Thorp G, Kittok R. Testosterone, and winning and losing in human competition. Horm. Behav. 1989; 23: 556–571.

    Article  PubMed  CAS  Google Scholar 

  83. Snegovskaya V, Viru A. Elevation of cortisol and growth hormone levels in the course of further improvement of performance capacity in trained rowers. Int. J. Sports Med. 1993; 14: 202–206.

    PubMed  CAS  Google Scholar 

  84. Lukaszewska J, Biczowa B, Bobilewicz D, Wolk M, Obuchowicz-Fidelus B. Effects of physical exercise on plasma cortisol and growth hormone levels in young weight lifters. Endocrynol. Pol. 1976; 27: 149–157.

    CAS  Google Scholar 

  85. Häkkinen K, Keskinen KL, Alén M, Komi PV, Kauhanen H. Serum hormone concentrations during prolonged training in elite endurance-trained and strength-trained athletes. Eur. J. Appl. Physiol. 1989; 59: 233–238.

    Article  Google Scholar 

  86. Vervoon C, Quist AM, Vermulst LJM, Erich WB, De Vries WR. Thijssen JHH. The behaviour of the plasma free testosterone/cortisol ratio during a season of elite rowing training. Int. J. Sports Med. 1991; 12: 257–263.

    Google Scholar 

  87. Kirwan JP, Costill DL, Fink WJ, Mitchell JB, Houmard J, Flynn MG. Changes in selected blood measures during repeated days of intense training and carbohydrate control. Int. J. Sports Med. 1990; 11: 362–366.

    PubMed  CAS  Google Scholar 

  88. Baron GL, Noakes TD, Levy W, Smith C, Millar RP. Hypothalamic dysfunction in overtrained athletes. J. Clin. Endocin. Metab. 1985; 60: 803–806.

    Google Scholar 

  89. Stray-Gunderson J, Videman T, Snell PG. Changes in selected objective parameters during overtarining. Med. Sci. Sports Exerc. 1986; 18: S54-S55.

    Google Scholar 

  90. Flynn MG, Pizza FX, Boone JB Jr, Andres FF, Michaud TA, Rodriguez-Zayas JR. Indices of training stress during competitive running and swimming seasons. Int. J. Sports Med. 1994; 15: 21–26.

    PubMed  CAS  Google Scholar 

  91. Kraemer WJ, Fry AC, Warren BJ, Stone MH, Fleck SJ, Kearney JT, Conroy BP, Maresh CM, Weseman CA, Triplett NT. Gordon SE. Acute Hormonal responses in elite junior weightlifters. Int. J. Sports Med. 1992; 13: 103–109.

    PubMed  CAS  Google Scholar 

  92. Louckas AB, Mortola JF, Girton L, Yen SSC. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J. Clin. Endocinol. Metab. 1989; 68: 402–411.

    Google Scholar 

  93. Collins KJ, Weiner JS. Endocrinological aspects of exposure to high environmental temperatures. Physiol. Rev. 1968; 48: 785–839.

    PubMed  CAS  Google Scholar 

  94. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J. Appl. Physiol. 1972; 33: 607–610.

    PubMed  CAS  Google Scholar 

  95. Hartley LH, Mason JW, Hogan RP et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J. Appl. Physiol. 1972; 33: 607–610.

    PubMed  CAS  Google Scholar 

  96. Galbo H, Houston ME, Christensen NJ, et al. The effect of water temperature on the hormonal response to prolonged swimming. Acta Physiol. Scand. 1979; 105: 326–337.

    PubMed  CAS  Google Scholar 

  97. Dulac S, Quirion A, Decarufel D, et al. Metabolic and hormonal responses to long-distance swimming in cold water. Int. J. Sports Med. 1987; 8: 352–356.

    PubMed  CAS  Google Scholar 

  98. Deligiannis A, Karamouzis M, Kouidi E, Mougios V, Kallaras C. Plasma TSH, T3, T4, and cortisol responses to swimming at varying water temperatures. Br. J. Sp. Med. 1993; 27: 247–250.

    CAS  Google Scholar 

  99. Bashir N, El-Migdadi F, Hasan Z, Al-Hader AA, Wezermes I, Gharaibeh M. Acute effects of exercise at low altitude (350 meters below sea level) on hormones of the anterior pituitary & cortisol in athletes. Endocrine Res. 1996; 22: 289–298.

    Article  CAS  Google Scholar 

  100. Kuoppasalmi K, Naveri H, Horkonen M, Adelereutz H. Plasma cortisol, androstenedione, testosterone and leutinizing hormone in running exercise of different intensities. Scand. J. Clin. Lab. Invest. 1980; 40: 403–409.

    Article  PubMed  CAS  Google Scholar 

  101. Newmark RS, Himathongkam T, Martin RP, Cooper KH. Rose LJ. Adrenocortical response to marathon running. J. Clin. Endocrinol. 1976; 42: 393–395.

    CAS  Google Scholar 

  102. Tabata I, Atoi Y, Miyashita M. Blood glucose concentration dependent ACTH and cortisol responses to prolonged exercise. Clin. Physiol. 1984; 4: 299–307.

    Article  PubMed  CAS  Google Scholar 

  103. Sutton JR. Effect of acute hypoxia on the hormonal response to exercise. J. Appl. Physiol. 1977; 42: 587–592.

    PubMed  CAS  Google Scholar 

  104. Harte JL, Eifert GH. The effects of running, environment, and attentional focus on athletes catecholamine and cortisol levels and mood. Psychophysiology 1995; 32: 49–54.

    Article  PubMed  CAS  Google Scholar 

  105. Kirshcbaum C, Wüst S, Hellhammer DH. Consistent sex differences in cortisol responses to psychological stress. Psychosom. Med. 1992; 54: 648–657.

    Google Scholar 

  106. Brandstädter J, Baltes-Götz B, Kirschbaum C, Hellhammer D. Developmental and personality correlated of adrenocortical activity as indexed by salivary cortisol: observations in the age range of 35 to 65 years. J. Psychosom. Res. 1991; 35: 173–185.

    Article  Google Scholar 

  107. Pope MK, Smith TW. Cortisol excretion in high and low cynically hostile men. Psychosom. Med. 1991; 53: 386–392.

    PubMed  CAS  Google Scholar 

  108. Bossert S, Berger M, Krieg JC, Schreiber W, Jounker M, von Zerssen D. Cortisol response to various stressful situations: relationship personality variables and coping styles. Neuropsychobiology 1988; 20: 36–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, S., Morimoto, K. Lifestyle, stress and cortisol response: Review II. Environ Health Prev Med 6, 15–21 (2001). https://doi.org/10.1007/BF02897304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897304

Key words

Navigation