Skip to main content
Log in

The Bergman kernel function of some Reinhardt domains (II)

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The boundary behavior of the Bergman kernel function of a kind of Reinhardt domain is studied. Upper and lower bounds for the Bergman kernel function are found at the diagonal points\(Z,\bar Z\). Let Ω be the Reinhardt domain\(\Omega = \left\{ {Z = (Z_1 ,Z_2 , \cdots ,Z_n ) \in \mathbb{C}^N ,Z_j \in \mathbb{C}^{N_j } ,j = 1,2. \cdots ,n,| \left\| Z \right\|_a = \sum\limits_{j = 1}^n {\left\| {Z_j } \right\|} _{a_j }^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} }< 1} \right\}\) where\(\alpha _j > 0, j - 1,2, \cdots ,n,N = N_1 + N_2 + \cdots + N_n ,||Z_j ||\) is the standard Euclidean norm in\(\mathbb{C}^{N_j } ,j = 1,2, \cdots ,n\) j and let\(K(Z,\overline W )\)be the Bergman kernel function of Ω. Then there exist two positive constantsm andM, and a functionF such that\(mF(Z,\overline Z ) \leqslant K(Z,\overline Z ) \leqslant MF(Z,\overline Z )\) holds for every Z∈Ω. Here\(mF(Z,\overline Z ) = ( - r(Z))^{ - N - 1} \prod\limits_{j = 1}^n {( - r(Z) + ||Z_j ||_{a_j }^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} } )^{(1 - a_j )N_j } } \) and r(Z)=||Z||α-1 is the defining function of Ω. The constantsm and M depend only on α = (α1,...,αn) and N1, N2, Nn, not on Z. This result extends some previous known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1.Hua,L.K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Transl. Amer. Math.Soc., Vol. 6, Providence, Rhode Island: AMS,1963.

    Google Scholar 

  • 2.Bergman,S., Über die Kemfunetion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math.,1933,169:1.

    Google Scholar 

  • 3.Fefferman,S., The Bergman kernel and biholomorphie mappings of strictly pseudoconvex comains, Invent. Math.,1974,26:1.

    Article  MATH  MathSciNet  Google Scholar 

  • 4.Mostow,D., Siu,Y. T., A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math.,1980,112: 321.

    Article  MathSciNet  Google Scholar 

  • 5.Gong,S.,Zheng,X.A., The Bergman kernel function of some Reinhardt domains, Tran. Amer. Math. Soc.,1996,348:1771.

    Article  MATH  MathSciNet  Google Scholar 

  • 6.D’Angelo,J.P.,A note on the Bergman kernel,Duke Math. J.,1978,45: 259.

    Article  MATH  MathSciNet  Google Scholar 

  • 7.Francsics,G.,Hanges,H.,The Bergman kernel of complex ovals and multivariable hypergeometric functions, Jour, of Functional Analysis,1996,142:494.

    Article  MATH  MathSciNet  Google Scholar 

  • 8.Francsics,G.,Hanges,N., Asymptotic behavior of the Bergman kernel and hypergeometric functions,Contemporary Math. 205,Providence, Rhode Island:AMS,1997,79–92.

    Google Scholar 

  • 9.D’Angelo,J.P.,An explicit computation of the Bergman kernel function,J. Geom. Anal.,1994,4:23.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, S., Zheng, X. The Bergman kernel function of some Reinhardt domains (II). Sci. China Ser. A-Math. 43, 458–469 (2000). https://doi.org/10.1007/BF02897138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897138

Keywords

Navigation