Skip to main content
Log in

Effects of membrane fluidity on [3H]TCP binding to PCP receptors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Phencyclidine (PCP) binds with high affinity to the ion channel associated with the NMDA receptor. The binding of the PCP receptor-specific ligand TCP is greatly reduced at temperatures between 2°C and 6°C, at which the plasma membrane is in a rigid state. However, membrane rigidity alone does not appear to cause the reduced TCP binding, since the membrane fluidizing agent A2C did not increase TCP binding at 4°C; instead, it decreased binding at 21°C. This inhibitory effect of A2C on TCP binding was dose dependent and was highly correlated with A2C-induced increases in membrane fluidity. The IC50 of A2C inhibition was 8.9 mM, with a pseudo-Hill coefficient of −0.24. Scatchard analysis demonstrated that this effect was the result of an increase in the apparentK d of [3H]TCP for the PCP receptor, with no effect on theB max. These results suggest that the function of the NMDA-PCP receptor complex is impaired by increases in membrane fluidity. These findings may be pharmacologically relevant in understanding the mechanism of action of such agents as general anesthetics and ethanol, which cause increases in plasma membrane fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aniline, O., Pitts, F.N. (1982). Phencyclidine (PCP): A review and perspectives. CRC Crit. Rev. Toxicol. 10:145–177

    Article  CAS  Google Scholar 

  • Anis, N.A., Berry, S.C., Burton, N.R., Lodge, D. (1983). The dissociative anesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones byN-methyl-aspartate. Br. J. Pharmacol. 79: 565–575

    PubMed  CAS  Google Scholar 

  • Ascher, P., Nowak, L. (1986). Calcium permeability of the channels activated byN-methyl-d-aspartate in isolated mouse central neurones. J. Physiol. (London) 377:35P

    Google Scholar 

  • Bartschat, D.K., Blaustein, M.P. (1988). Psychotomimetic sigma-ligands, dexoxadrol and phencyclidine block the same presynaptic potassium channel in rat brain. J. Physiol. (London) 403: 341–353

    CAS  Google Scholar 

  • Byrd, J.C., Bykov, V., Rothman, R.B. (1987). Chronic haloperidol treatment up-regulates PCP receptors in rat brain. Eur. J. Pharmacol. 140: 121–122

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1988). Glutamate toxicity and diseases of the central nervous system. Neuron 1: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Clouet, D.H. (1986). Phencyclidine: An update. NIDA Res. Monogr. 64: 266 pp

  • Collingridge, G.L., Kehl, S.J., McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (London) 334: 33–46

    CAS  Google Scholar 

  • Cotman, C.W., Iversen, L.L. (eds). Excitatory amino acids in the brain—focus on NMDA receptors. Trends Neurosci. 10(7): 263–265

  • DePietro, F., Byrd, J.C. (1990). Effects of membrane fluidity on [3H]TCP binding. FASEB J 4(3): A602

    Google Scholar 

  • Domino, E.P., Kamenka, J.M. (1988). Sigma and Phencyclidine-like Compounds as Molecular Probes NPP Books, Ann Arbor, MI

    Google Scholar 

  • Duchen, M.R., Burton, N.R., Biscoe, T.J. (1985). An intracellular study of the interactions ofN-methyl-d-aspartate with ketamine in the mouse hippocampal slice. Brain Res. 342: 149–153

    Article  PubMed  CAS  Google Scholar 

  • Engberg, I., Flatman, J.A., Lambert, J.D.C. (1979). The actions of excitatory amino acids on motoneurons in the feline spinal cord. J. Physiol. 288: 227–260

    PubMed  CAS  Google Scholar 

  • Flatman, J.A., Schwindt, P.C., Crill, W.E., Stafstrom, C.E. (1983) Multiple actions ofN-methyl-d-aspartate on cat neocortical neurons in vitro. Brain Res. 266: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Foster, A.C., Fagg, G.E. (1984). Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7: 103–164

    Article  CAS  Google Scholar 

  • Furchgott, R.F. (1955). The pharmacology of vascular smooth muscle. Pharmacol. Rev. 7: 183–265

    PubMed  CAS  Google Scholar 

  • Gundlach, A.L., Largent, B.L., Snyder, S.H. (1985). Phencyclidine and Sigma opiate receptors in brain: Biochemical and autoradiographic differentiation. Eur. J. Pharmacol. 113: 465–466

    Article  PubMed  CAS  Google Scholar 

  • Gundlach, A.L., Largent, B.L., Snyder, S.H. (1986). Autoradiographic localization of Sigma receptor binding sites in guinea pig and rat central nervous system with (+)[3H]-3(3-hydroxyphenyl)-N-(1-propyl)piperidine. J. Neurosci. 6: 1757–1770

    PubMed  CAS  Google Scholar 

  • Harrison, N.L., Simmonds, M.A. (1985). Quantitative studies on some antagonists ofN-methyl-d-aspartate in slices of rat cerebral cortex. Br. J. Pharmacol. 84: 381–391

    PubMed  CAS  Google Scholar 

  • Hoffman, P.L., Rabe, C.S., Moses, F., Tabakoff, B. (1989).N-Methyl-d-aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. J. Neurochem. 52: 1937–1940

    Article  PubMed  CAS  Google Scholar 

  • Honey, C.R., Miljkovic, Z., MacDonald, J.F. (1985). Ketamine and phencyclidine cause a voltage-dependent block of responses tol-aspartic acid. Neurosci. Lett. 61: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Hunt, W.A. (1985). Alcohol and Biological Membranes. Guilford Press, New York, 214 pp

    Google Scholar 

  • Johnson, J.W., Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt, A., Bear, M.F., Singer, W. (1987). Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238: 355–358

    Article  PubMed  CAS  Google Scholar 

  • Kloog, Y., Haring, R., Sokolovsky, M. (1988). Kinetic characterization of the phencyclidine-N-methyl-d-aspartate receptor interaction: Evidence for a steric blockade of the channel. Biochemistry 27: 843–848

    Article  PubMed  CAS  Google Scholar 

  • Kosower, E.M., Kosower, N.S., Faltin, Z., Diver, A., Saltoun, G., Frensdorff, A. (1974). Membrane mobility agents: A new class of biologically active molecules. Biochim. Biophys. Acta 363: 261–266

    Article  PubMed  CAS  Google Scholar 

  • Largent, B.L., Gundlach, A.L., Snyder, S.H. (1986). Pharmacological and autoradiographic discrimination of Sigma and phencyclidine receptor binding sites in brain with (+)[3H]SKF 10,047, (+)[3H]3-PPP and [3H]TCP. J. Pharmacol. Exp. Ther. 238: 739–745

    PubMed  CAS  Google Scholar 

  • Lakowicz, J.R.,(1983). Principles of Fluorescence Spectroscopy. Plenum Press, New York

    Google Scholar 

  • Lakowicz, J.R., Prendergast, F.G. (1978). Quantitation of hindered rotations of diphenylhexatriene in lipid bilayers by differential polarized phase fluorometry. Science 200: 1399–1407

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J.R., Prendergast, F.G., Hogen, D. (1979). Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers: Quantitation of hindered depolarizing rotations. Biochemistry 18: 508–519

    Article  PubMed  CAS  Google Scholar 

  • Lima-Landmand, M.R., Albuquerque, E.X. (1989). Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells. FEBS Lett. 247: 61–67

    Article  Google Scholar 

  • Lincoln, J., Coopersmith, R., Harris, E.W., Cotman, C.W., Leon, M. (1988). NMDA receptor activation and early olfactory learning. Dev. Brain Res. 39: 309–312

    Article  CAS  Google Scholar 

  • Loo, P., Braunwalder, A., Lehmann, J., Williams, M. (1986). Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur. J. Pharmacol. 123: 467–468

    Article  PubMed  CAS  Google Scholar 

  • Loo, P.S., Braunwalder, A.F., Lehmann, J., Williams, M., Sills, M.A. (1988). Interaction ofl-glutamate and magnesium with phencyclidine recognition sites in rat brain: Evidence for multiple affinity states of the phencyclidine/N-methyl-d-aspartate receptor complex. Mol. Pharmacol. 32: 820–830

    Google Scholar 

  • Lovinger, D.M., White, G., Weight, F.F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J., Barker, J.L. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature (London) 321:519–522

    Article  CAS  Google Scholar 

  • MacDonald, J.F., Porietis, A.V., Wojtowicz, J.M. (1982).l-Aspartic acid induces a region of negative slope conductance in the current-voltage relationship of cultured spinal cord neurons. Brain Res. 237:248–253

    Article  PubMed  CAS  Google Scholar 

  • Maragos, W.F., Chu, D.C.M., Greenamyre, J.T., Penney, J.B., Young, A.B. (1986). High correlation between the localization of [3H]TCP binding and NMDA receptors. Eur. J. Pharmacol. 123:173–174

    Article  PubMed  CAS  Google Scholar 

  • Maragos, W.F., Penney, J.B., Young, A.B. (1988). Anatomic correlation of NMDA and [3H]TCP-labeled receptors in rat brain. J. Neurosci. 8(2):493–501

    PubMed  CAS  Google Scholar 

  • Martin, D., Lodge, D. (1985). Ketamine acts as a noncompetitiveN-methyl-d-aspartate antagonist on frog spinal cord in vitro. Neuropharmacology 24:999–1003

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M.L., Westbrook, G.L. (1987). The physiology of excitatory amino acids in the vertebrate nervous system. Prog. Neurobiol. (Oxford) 28:197–276

    Article  CAS  Google Scholar 

  • Munson, P.J., Rodbard, D. (1980). LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239

    Article  PubMed  CAS  Google Scholar 

  • Murphy, S.N., Thayer, S.A., Miller, R.J. (1987). The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J. Neurosci. 7:4145–4158

    PubMed  CAS  Google Scholar 

  • Olney, J.W. (1989). Excitatory amino acid and neuropsychiatric disorders. Biol. Psychiatry 26:505–525

    Article  PubMed  CAS  Google Scholar 

  • Paleos, G.A., Yang, Z.W., Byrd, J.C. (1990). Ontogeny of PCP and Sigma receptors in rat brain. Dev. Brain Res. 51(2):147–152

    Article  CAS  Google Scholar 

  • Reynolds, I.J., Miller, R.J. (1988). Multiple sites for the regulation of theN-methyl-d-aspartate receptor. Mol. Pharmacol. 33:581–584

    PubMed  CAS  Google Scholar 

  • Reynolds, I.J., Murphy, S.N., Miller, R.J. (1987).3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc. Natl. Acad. Sci. U.S.A. 84:7744–7748

    Article  PubMed  CAS  Google Scholar 

  • Siebke, H., Breivik, H., Rod, T., Lind, B. (1975). Survival after 40 minutes' submersion without cerebral sequelae. Lancet 1:1275–1277

    Article  PubMed  CAS  Google Scholar 

  • Snell, L.D., Morter, R.S., Johnson, K.M. (1987). Glycine potentiatesN-methyl-d-aspartate-induced [3H]TCP binding to rat cortical membranes. Neurosci. Lett. 83:313–317

    Article  PubMed  CAS  Google Scholar 

  • Sonders, M.S., Keana, J.F.W., Weber, E. (1988). Phencyclidine and psychotomimetic opiates: Recent insights into their biochemical and physiological sites of action. Trends Neurosci. 11(1):37–40

    Article  PubMed  CAS  Google Scholar 

  • Vignon, J., Chicheportiche, R., Chicheportiche, M., Kamenka, J.M., Geneste, P., Lazdunski, M. (1983). [3H]TCP: A new tool with high affinity for the PCP receptor in rat brain. Brain Res. 280:194–197

    Article  PubMed  CAS  Google Scholar 

  • Vincent, J.P., Vignon, J., Kartalovski, B., Geneste, P., Kamenka, J.M., Lazdunski, M. (1979). Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes. Proc. Natl. Acad. Sci. U.S.A. 76:4678–4682

    Article  PubMed  CAS  Google Scholar 

  • Weissmann, G., Claiborne, R. (1975). Cell Membranes: Biochemistry, Cell Biology, and Pathology. H.P. Publishing Company, New York

    Google Scholar 

  • Wong, E.H.F., Knight, A.R., Ransom, R. (1987). Glycine modulates [3H]MK-801 binding to the NMDA receptor in rat brain. Eur. J. Pharmacol. 142:487–488

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski, J.T., Nicoletti, F., Fadda, E., Costa, E. (1987). Phencyclidine is a negative allosteric modulator of signal transduction at two subclasses of excitatory amino acid receptors. Proc. Natl. Acad. Sci. U.S.A. 84:5068–5072

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.W., Paleos, G.A., Byrd, J.C. (1988). PCP and Sigma receptors: Differential effects of cations and pH on ligand affinity. Soc. Neurosci. Abst. 14(1):485

    Google Scholar 

  • Zubenko, G. (1986). Hippocampal membrane alteration in Alzheimer's disease. Brain Res. 385:115–121

    Article  PubMed  CAS  Google Scholar 

  • Zubenko, G., Cohen, B.M. (1985). Effects of phenothiazine treatment on the physical properties of platelet membranes from psychiatric patients. Biol. Psychiatry 20:384–396

    Article  PubMed  CAS  Google Scholar 

  • Zukin, S.R., Zukin, R.S. (1979). Specific [3H]phencyclidine binding in rat central nervous system. Proc. Natl. Acad. Sci. U.S.A. 76:5372–5376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Frank DePietro is the recipient of an NIH Medical Scientist Training Award to the University of Pittsburgh College of Medicine. This research was supported in part by NIMH grant MH30915.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DePietro, F.R., Byrd, J.C. Effects of membrane fluidity on [3H]TCP binding to PCP receptors. J Mol Neurosci 2, 45–52 (1990). https://doi.org/10.1007/BF02896925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02896925

Keywords

Navigation