Skip to main content
Log in

On the velocity-vorticity approach to viscous incompressible flow

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

À memória de Emanuela Cristofaro, minha mãe “Tantum series juncturaque poleet. Tantum de medio sumptis accedit honoris” (Citation de Horatius en épigraphe de l'Encyclopedie de Diderot & D'Alambert).

Summary

This work present a selection of recent analytical and numerical results on the equations describing 2D and 3D laminar flows of a newtonian incompressible viscous fluid in a bounded domain, in the form of a second order system in terms of the velocity and vorticity fields. Most of the study is carried out taking as a model the case of stokesian flows, in which the main difficulties to treat this kind of system are encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Glowinski, R., Pironneau, O. (1992), “Tuning the mesh of a mixed method for the stream function-vorticity formulation of the Navier-Stokes equations”,Numerische Mathematik,63, 145–163.

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R. A. (1975),Sobolev Spaces, Academic Press, N.Y..

    MATH  Google Scholar 

  3. Amara, M. (1994), “Une méthode optimale de classeC o d'approximation du bilaplacien”,C. R. Acad. Sci. Paris,319, I, 1327–1330.

    MathSciNet  MATH  Google Scholar 

  4. Amara, M., El Dabaghi, F. (1995), “An optimalC o algorithm for the biharmonic problem”, Report, EPT Tunis-INRIA, France.

    Google Scholar 

  5. Babuška, I. (1971), “Error bounds for the finite element method”,Numerische Mathematik,16, 322–333.

    Article  MathSciNet  MATH  Google Scholar 

  6. — (1973), “The finite element method with Lagrange multipliers”,Numerische Mathematik,20, 179–192.

    Article  MATH  Google Scholar 

  7. Bendali, A. (1984),Approximation par éléments finis de surface de problémes de diffraction des ondes électromagnétiques, Thèse, Université Paris-VI.

  8. Bernardi, C. (1979) “Méthodes d'éléments finis mixtes pour les équations de Navier-Stokes”,Thèse, Université Paris-VI.

  9. Borchers, W. & Sohr, H. (1988), “The equations divu=f and rotv=g with zero boundary conditions”,Monograph in Mathematics, University of Padderborn, Germany.

    Google Scholar 

  10. Brézis, H. (1992),Analyse fonctionnelle; Théorie et applications, Masson, Paris.

    Google Scholar 

  11. Brezzi, F. & Raviart, P.A. (1976), “Mixed Finite Element Methods for Fourth Order Elliptic Equations”, in:Topics in Numerical Analysis III, J.J.H. Miller ed., Academic Press, London, pp. 33–36.

    Google Scholar 

  12. Chang, C.L. (1990), “A mixed finite element method for the Stokes problem: Acceleration-pressure formulation”,Appl. Math. Comp. 36, 135–146.

    Article  MATH  Google Scholar 

  13. Ciarlet, P.G. & Raviart, P.A. (1974), “A Mixed Finite Element Method for the Biharmonic Equation”, in:Mathematical Aspects of the Finite Element Method in Partial Differential Equations, C. de Boor ed., Academic Press, N. Y., pp. 145–175.

    Google Scholar 

  14. Ciarlet, P.G. (1978).The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam.

    Book  MATH  Google Scholar 

  15. Daube, O. (1992), “Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique”,J. Comput. Phys. 103, 402–414.

    Article  MathSciNet  MATH  Google Scholar 

  16. Daube, O., Guermond, J.-L., Sellier, A. (1991), “Sur la formulation vitesse-tourbillon des équations de Navier-Stokes en écoulement incompressible”,C. R. Acad. Sci. Paris,313, II, 377–382.

    MATH  Google Scholar 

  17. Dean, E.J., Glowinski, R., Pironneau, O. (1991), “Iterative solution of the stream functionvorticity formulation of the Stokes problem, applications to the numerical simulation of incompressible viscous flow”,Comput. Methods Appl. Mech. Eng. 87, 117–155.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dupire, B. (1985),Problemas Variacionais Lincares, Sua Aproximação c Formulações Mistas, Doctoral Thesis, Pontifícia Universidade Católica do Rio de Janciro.

  19. El Dabaghi, F., Pironneau, O. (1986), “Stream vectors in three-dimensional acrodynamics”,Numer. Math. 48, 561–589.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fontaine, J., Ta-Phuoc Loc (1995), “Étude numérique des sillages engendrés par une plaque d'envergure finie”,C. R. Acad. Sci. Paris,320, IIb, 581–586.

    Google Scholar 

  21. Ghadi, F. (1994),Résolution par la méthode des éléments finis des équations de Navier-Stokes en formulation π-ω Doctoral Thesis, Université de Saint-Etienne.

  22. Girault, V., Raviart, P.-A. (1986),Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  23. Glowinski, R., Pironneau, O. (1979), “Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem”,SIAM Review,21, 167–212.

    Article  MathSciNet  MATH  Google Scholar 

  24. Grisvard, P. (1992), Singularities in Boundary Value Problems, Masson, Paris.

    MATH  Google Scholar 

  25. Guermond, J.-L., Quartapelle, L. (1995), “Uncoupled ω-ψ formulation for plane flows in multiply connected domains, Notes et Documents LIMSI-CNRS N0:95-27, France.”

  26. Guevremont, G., Habashi, W.G., Hafez, M.M. (1990), “Finite element solution of the Navier-Stokes equations by a velocity-vorticity Method”,Int. J. Numer. Meth. Fluids,11, 661–675.

    Article  MATH  Google Scholar 

  27. Gunzburger, M.D. (1989),Finite Element Methods for Viscous Incompressible Flows, Academic Press, Boston.

    MATH  Google Scholar 

  28. Gunzburger, M.D., Peterson, J.S. (1988), “On finite element approximations of the streamfunction-vorticity and velocity-vorticity equations”,Int. J. Numer. Meth. Fluids,8, 1229–1240.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ladyzhenskaya, O.A. (1969),The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York.

    MATH  Google Scholar 

  30. Leal-Toledo, R.C.P., Loula, A.F.D., Toledo, E.M., Ebecken, N.F.F. (1995), “On a least square finite element formulation for the Stokes problem”, in:Proc. 9th Int. Conf. on Finite Elements in Fluids: New trends and applications, Venezia, Italy, pp. 307–316.

  31. Lions, J.L. (1965),Problèmes aux limites dans les équations aux dérivées particlles, Presse de l'Université de Montréal.

  32. Lions, J.L. & Magenès, E. (1968),Problèmes aux limites non homogènes et applications, Dunod, Paris.

    MATH  Google Scholar 

  33. Napolitano, M., Pascazio, G. (1991), “A numerical method for the vorticity-velocity Navier-Stokes equations in two and three dimensions”,Comput. Fluids,19, 489–495.

    Article  MATH  Google Scholar 

  34. Napolitano, M., Catalano, L.A. (1991), “A multigrid solver for the vorticity-velocity Navier-Stokes equations”,Int. J. Numer. Meth. Fluids,13, 49–59.

    Article  MATH  Google Scholar 

  35. Nicolaides, R. A. (1989), “Triangular discretization for the vorticity-velocity formulation”, in:Proc. 7th Int. Conf. on Finite Element Methods in Flow Problems, Huntsville, Ala. pp. 824–829.

  36. Pironneau, O. (1989),Finite Element Methods for Fluids, Wiley, Chichester.

    Google Scholar 

  37. Quartapelle, L. (1988), “Factorized formulations of the incompressible Navier-Stokes equations”, in:Computational Methods in Flow Analysis, H. Niki, M. Kawahara eds., Okayama University of Science Press, Okayama, pp. 337–348.

    Google Scholar 

  38. — (1993),Numerical Solution of the Incompressible Navier-Stokes Equations, Birkhäuser, Basel.

    MATH  Google Scholar 

  39. Quartapelle, L., Muzzio, A. (1988), “Decoupled solution of vector Poisson equations with boundary condition coupling”, in:Computional Fluid Dynamics, G. de Vahl Davis, C. Fletcher eds., Elsevier Science Publishers B.V., North-Holland, pp.609–619.

    Google Scholar 

  40. Quartapelle, L., Ruas, V. & Zhu, J. (1998), “Uncoupled Solution of the Three-dimensional Vorticity-Velocity Equations”,ZAMP,54–3, 511–534.

    Google Scholar 

  41. Rannacher, R., Scott, R. (1982), “Some optimal error estimates for piecewise linear finite element approximations”,Math. Comp.,38, 435–445.

    Article  MathSciNet  Google Scholar 

  42. Ruas, V. (1989), “A Survey on Finite Element Methods for 3D Incompressible Viscous Flow”, in:Finite Element Analysis in Fluids, T.J. Chung and G.R. Karr eds., University of Alabama in Huntsville Press, Huntsville, pp. 1104–1111.

    Google Scholar 

  43. — (1991), “Variational approaches to the two-dimensional Stokes system in terms of the vorticity”,Mech. Res. Comm.,18, 359–366.

    Article  MathSciNet  MATH  Google Scholar 

  44. — (1991), “Une formualtion vitesse-tourbillon des équations de Navier-Stokes incompressibles tridimensionnelles”,C. R. Acad. Sci. Paris,313,I, 639–644.

    MathSciNet  MATH  Google Scholar 

  45. — (1992), “Finite element methods for three-dimensional incompressible viscous flow”, in:Finite Elements in Fluids,Vol.8. T.J. Chung ed., Hemisphere Publishing Corporation, Washington, pp. 211–235.

    Google Scholar 

  46. — (1994), “On formulations of vorticity systems for viscous incompressible flow with numerical applications”,ZAMM,74, 43–55.

    Article  MathSciNet  MATH  Google Scholar 

  47. — (1995), “Approximating harmonic bases for a decoupled solution of viscous flow problems in ψ-ω formulation”,ZAMM,75, 407–408.

    MathSciNet  MATH  Google Scholar 

  48. — (1995), “Iterative solution of the incompressible Navier-Stokes equations in stream function-vorticity formulation”,C. R. Acad. Sci. Paris,318,I, 293–298.

    MathSciNet  Google Scholar 

  49. — (1999), “A New Formulation of the Velocity-Vorticity System in Viscous Incompressible Flow”,ZAMM,79, 29–36.

    Article  MathSciNet  MATH  Google Scholar 

  50. Ruas, V., “A Non Standard Vector Problem in IR3 Arising in the Time-Integration of Velocity-Vorticity Systems”, (submitted toJapan J. Ind. Applied Mathematics).

  51. Ruas, V., Quartapelle, L. & Zhu, J. (1996),A symmetrized velocity-vorticity formulation of the three-dimensional Stokes system.CRAS de Paris.t. 323, IIb, 819–824.

    MATH  Google Scholar 

  52. Ruas, V., Zhu, J. (1994), “Decoupled solution of the velocity-vorticity system for two-dimensional viscous incompressible flow”,C. R. Acad. Sci. Paris,318,I, 293–298.

    MathSciNet  MATH  Google Scholar 

  53. — (1995), “On the velocity-vorticity formulation of the Stokes system in two- and three-dimension spaces”,Mech. Res. Comm.,22, 511–517.

    Article  MathSciNet  MATH  Google Scholar 

  54. — (1998), “On the Velocity-Vorticity Formulation of the Two-dimensional Stokes System and its Finite Element Approximation”,Int. J. Comp. Fluid Dynamics,10, 27–43.

    Article  MathSciNet  MATH  Google Scholar 

  55. Schwartz, L. (1950),Théorie des Distributions, Hermann, Paris.

    MATH  Google Scholar 

  56. Scholz, R. (1978), “A mixed method for fourth order problem using finite elements”,RAIRO Anal. Numer.,12, 85–90.

    MathSciNet  MATH  Google Scholar 

  57. Strang, G., Fix, G.J. (1973),An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New York.

    MATH  Google Scholar 

  58. Temam, R. (1977),Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam.

    MATH  Google Scholar 

  59. Thoméc, V. (1984),Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics1054, Springer-Verlag, Berlin.

    Google Scholar 

  60. Zhu, J. (1992), “Finite element methods for the mixed initial-boundary value problems of the semiconductor device equations with magnetic influence”,Math. Comp.,59, 39–62.

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhu, J. (1995),On the Velocity-Vorticity Formulation of the Stokes System and its Finite Element Approximations, Doctoral Thesis, Pontifícia Universidade Católica do Rio de Janeiro.

  62. Zhu, J., Quartapelle, L., Loula, A.F.D. (1996), “Uncoupled variational formulation of a vector Poisson problem”,C. R. Acad. Sci. Paris,323,I, 971–976.

    MathSciNet  MATH  Google Scholar 

  63. Zhu, J. & Ruas, V., “The Stokes Velocity-Vorticity System: Variational Formulation and Finite Element Approximation”, (submitted toNum. Math.)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruas, V. On the velocity-vorticity approach to viscous incompressible flow. Arch Computat Methods Eng 6, 223–268 (1999). https://doi.org/10.1007/BF02896424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02896424

Keywords

Navigation