Skip to main content
Log in

Investigation of the weak interaction from general relativity

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The flat—space-time limit of a generalized covariant field theory of electrodynamics in general relativity is explored. The generalized force, expressed in terms of Hermitian products of spinor functions, is a complex variable. Its real part corresponds to the standard (Lorentz) force in electrodynamics; its imaginary part corresponds to reflection nonsymmetric forces, some that can be identified with the weak interaction—particularly applied to neutron decay, within the context of this theory. To test the theory, the effective charge compared with the electron charge,e w/e, is computed, found to be the order 7.10−4. This result is compared with Fermi’s result for this ratio for the pseudoscalar, current-current interaction, which gave the order of 3.10−4.

Riassunto

Si esplora il limite nello spazio tempo piatto di una teoria di campo covariante generalizzata nella relatività generale. La forza generalizzata, espressa in termini dei prodotti hermitiani di funzioni spinoriali, è una variabile complessa. La sua parte reale corrisponde alla forza standard (di Lorentz) nell’elettrodinamica; la sua parte immaginaria corrisponde alle forze di riflessione non simmetriche, qualcosa che può essere identificato con l’interazione debole — in particolare applicato al decadimento di neutroni, nel contesto di questa teoria. Per controllare la teoria, si calcola la carica efficace confrontata con la carica elettronicae w/e, trovata dall’ordine di 7.10−4. Questo risultato è confrontato con il risultato di Fermi per questo rapporto per l’interazione pseudoscalare corrente-corrente, che è dell’ordine di 3.10−4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bernardini:Weak interactions, inProc. S.I.F., Course XXXII, edited byT. D. Lee (Academic Press, New York, N. Y., 1966).

    Google Scholar 

  2. G. Danby, J. M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz andJ. Steinberger:Phys. Rev. Lett.,9, 36 (1962).

    Article  ADS  Google Scholar 

  3. J. J. Simpson:Phys. Rev. Lett.,54, 1891 (1985).

    Article  ADS  Google Scholar 

  4. R. Davis, D. Hormer andK. Hoffman:Phys. Rev. Lett.,20, 1205 (1968).

    Article  ADS  Google Scholar 

  5. B. Pontecorvo:Ž. Ėksp. Teor. Fiz.,53, 1717 (1967)

    MATH  Google Scholar 

  6. M. Sachs:Lett. Nuovo Cimento,32, 307 (1981).

    Article  ADS  Google Scholar 

  7. M. Sachs:Nuovo Cimento A,66, 94 (1981).

    Article  ADS  Google Scholar 

  8. M. Sachs:Int. J. Theor. Phys.,5, 161 (1972).

    Article  Google Scholar 

  9. E. Fermi:Elementary Particles (Yale University Press, New Haven, Conn., 1951).

    MATH  Google Scholar 

  10. Key papers byS. L. Glashow, A. Salam andS. Weinberg are reproduced in:Gauge Theory of Weak and Electromagnetic Interactions, edited byC. H. Lai (World Scientific Publ. Co., Singapore, 1981).

    Google Scholar 

  11. UA1Collaboration (CERN and Geneva):Phys. Rev. Lett. B,122, 103 (1983).

    Article  ADS  Google Scholar 

  12. M. Sachs:General Relativity and Matter (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  13. A. Einstein:Ann. Math. (N. Y.),46, 578 (1945).

    Article  MATH  Google Scholar 

  14. M. Sachs:Quantum Mechanics from General Relativity (Reidel, Dordrecht, 1986), Chapt. 7.

    Book  Google Scholar 

  15. M. Sachs:Nuovo Cimento,31, 98 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. F. Ramsey:Phys. Rep.,43, 409 (1978).

    Article  ADS  Google Scholar 

  17. M. Sachs:General Relativity and Matter (Reidel, Dordrecht, 1982), p. 120.

    Book  MATH  Google Scholar 

  18. M. Sachs andS. L. Schwebel:Nuovo Cimento Suppl.,21, 197 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Sachs:Nuovo Cimento A,70, 229 (1982).

    Article  ADS  Google Scholar 

  20. G. N. Watson:Theory of Bessel Functions, 2nd edition (Cambridge University Press, Cambridge, 1944), p. 434, 737.

    MATH  Google Scholar 

  21. E. Fermi:Elementary Particles (Yale University Press, New Haven, Conn., 1951). p. 43.

    MATH  Google Scholar 

  22. E. Fermi:Elementary Particles (Yale University Press, New Haven, Conn., 1951), p. 39.

    MATH  Google Scholar 

  23. M. Sachs:Nuovo Cimento A,43, 74 (1978).

    Article  ADS  Google Scholar 

  24. M. Sachs:Lett. Nuovo Cimento,24, 577 (1979).

    Article  Google Scholar 

  25. M. Sachs:Lett. Nuovo Cimento,39, 17 (1984).

    Article  Google Scholar 

  26. Abdus Salam in:Gauge Theory of Weak and Electromagnetic Interactions, edited byC. H. Lai (World Scientific Publ. Co., Singapore, 1981), p. 16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, M. Investigation of the weak interaction from general relativity. Nuov Cim A 94, 390–404 (1986). https://doi.org/10.1007/BF02894912

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02894912

PACS. 12.30.s

PACS. 14.20.Cg

Navigation