Skip to main content
Log in

Families as radial excitations

Семейства, как радиальные возбуждения

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

It is shown that the qualitative features of the experimental data on the mass spectrum and spatial extension of the charged leptons and quarks can be reproduced by the eigenstates of relativistic wave equations if there are strongly attractive renormalizable forces which are asymptotically free (or undercritical). Beyond one has to assume that the boundary condition on the running coupling is different for different bound states.

Riassunto

Si mostra che le caratteristiche qualitative dei dati sperimentali sullo spettro di massa e l’estensione spaziale dei leptoni carichi e dei quark si possono riprodurre mediante gli autostati delle equazioni d’onda relativistiche se ci sono forze rinormalizzabili fortemente attrattive che sono asintoticamente libere (o sottocritiche). Inoltre bisogna assumere che la condizione al contorno sull’accoppiamento corrente è diversa per i diversi stati legati.

Резюме

Показывается, что качественные особенности Экспериментальных данных для спектров масс и пространственной протяженности заряженных лептонов и кварков могут быть воспроизведены с помошью собственных состояний релятивистских волновых уравнений, если сушествуют сильные притягиваюшие перенормируемые силы, которые являются асимптотически свободными (или докритическими). Кроме того предполагается, что граничное условие для варьируемой связи является различным для различных связанных состояний.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Glashow, J. Iliopoulos andL. Maiani:Phys. Rev. D,2, 1285 (1970).

    Article  ADS  Google Scholar 

  2. C. Bouchiat, J. Iliopoulos andPh. Meyer:Phys. Lett. B,38, 44 (1972).

    Article  Google Scholar 

  3. V. Višnjić-Triantafillou:Phys. Lett. B,95, 47 (1980)

    Article  ADS  Google Scholar 

  4. Ch. Kopper andH. P. Dürr:Nuovo Cimento A,66, 427 (1981)

    Article  ADS  Google Scholar 

  5. O. W. Greenberg andJ. Sucher:Phys. Lett. B,99, 339 (1981).

    Article  ADS  Google Scholar 

  6. S. Yamada: inProceedings of the 1983 International Symposium on Lepton and Photon Interactions (Cornell University Press, Ithaca, N. Y., 1984).

    Google Scholar 

  7. C. Itzykson andJ. B. Zuber:Quantum Field Theory (McGraw-Hill, New York, N. Y., 1980), Chapt. 2.

    Google Scholar 

  8. H. Narnhofer:Acta Phys. Austriaca,40, 306 (1974).

    MathSciNet  Google Scholar 

  9. H. A. Bethe andE. E. Salpeter:Quantum Mechanics of One-and Two-Electron Atoms (Springer-Verlag, New York, N. Y., 1957), Sect. 14.

    Book  MATH  Google Scholar 

  10. W. Pieper andW. Greiner:Z. Phys.,218, 327 (1969)

    Article  ADS  Google Scholar 

  11. Ch. Kopper:Nuovo Cimento A,93, 99 (1986).

    Article  ADS  Google Scholar 

  12. K. M. Case:Phys. Rev.,80, 977 (1950).

    Article  Google Scholar 

  13. F. J. Dyson:Phys. Rev.,75, 1736 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N. Nakanishi:Suppl. Prog. Theor. Phys.,43, 1 (1969).

    Article  ADS  MATH  Google Scholar 

  15. C. Itzykson andJ. B. Zuber:Quantum Field Theory (McGraw-Hill, New York, N. Y., 1980), Chapt. 10, from which we also take our conventions on propagators, Feynman rules, etc.

    Google Scholar 

  16. S. Drell andT. D. Lee:Phys. Rev. D,5, 1738 (1972).

    Article  ADS  Google Scholar 

  17. G. T. Bodwin andD. R. Yennie:Phys. Rep.,43, 267 (1978), Chapt. 3.

    Article  ADS  Google Scholar 

  18. H. P. Dürr:Nuovo Cimento A,78, 265 (1983).

    Google Scholar 

  19. H. Saller:Nuovo Cimento A,79, 333 (1984).

    Article  ADS  Google Scholar 

  20. E. Derman:Phys. Rev. D,23, 1623 (1981).

    Article  ADS  Google Scholar 

  21. K. Aoki, Z. Hioki, R. Kawabe, M. Konuma andT. Muta:Prog. Theor. Phys. Suppl.,73, 1 (1982).

    Article  ADS  Google Scholar 

  22. G. C. Wick:Phys. Rev.,96, 1124 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E. zur Linden andH. Mitter:Nuovo Cimento B,61, 389 (1969).

    Article  ADS  Google Scholar 

  24. K. D. Rothe:Phys. Rev.,170, 1548 (1968).

    Article  ADS  Google Scholar 

  25. S. Mandelstam:Proc. R. Soc. London, Ser. A,233, 248 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M. Fischler andJ. Oliensis:Phys. Lett. B,119, 385 (1982).

    Article  ADS  Google Scholar 

  27. J. Bartholomew et al.:Nucl. Phys. B,230, 222 (1983).

    Article  ADS  Google Scholar 

  28. There is also an argument that a confining BS kernel should be re-defined by an additive constant (31).

    Article  ADS  Google Scholar 

  29. D. Gromes:Z. Phys. C,11, 147 (1981).

    Article  ADS  Google Scholar 

  30. M. B. Halpern:Ann. Phys. (N. Y.),39, 351 (1966).

    Article  ADS  Google Scholar 

  31. C. Itzykson andJ. B. Zuber:Quantum Field Theory (McGraw-Hill, New York, N. Y., 1980), p. 493.

    Google Scholar 

  32. M. J. Levine, J. Wright andJ. A. Tjon:Phys. Rev.,157, 1416 (1967)

    Article  ADS  Google Scholar 

  33. Ch. Kopper:Phys. Lett. B,155, 409 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopper, C. Families as radial excitations. Nuov Cim A 94, 103–132 (1986). https://doi.org/10.1007/BF02894867

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02894867

PACS. 11.10

Navigation