Skip to main content

Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients

Abstract

Free radical mediated pathological processes may have a role in schizophrenia. Free radicals (oxy radicals, such as superoxide, hydroxyl ions and nitric oxide) cause cell injury, when they are generated in excess or when the antioxidant defense is impaired. Both these processes seem to be affected in schizophrenia. In this study we investigated erythrocyte superoxide dismutase (SOD) and catalase (CAT) activities as antioxidant enzymes, malondialdehyde (MDA) as a sign of lipid peroxidation in schizophrenic patients. Activities of superoxide dismutase, catalase and malondialdehyde were greater in patients compared with the control group which may reflect increased oxidative stress in the brain tissue of schizophrenics. In the patient group erythrocyte SOD and CAT activities were weakly negative correlated with MDA concentration. These data reveal that antioxidant defense mechanisms might be impaired in schizophrenic patients. These findings also provide a theoretical basis for the development of novel therapeutic strategies, such as antioxidant supplementation.

This is a preview of subscription content, access via your institution.

References

  1. Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    PubMed  Article  CAS  Google Scholar 

  2. Lohr, J.B. (1991) Oxygen radicals and neuropsychiatric illness: some speculations. Arch. Gen. Psychiatr. 48, 1097–1106.

    PubMed  CAS  Google Scholar 

  3. Reddy, R.D. and Yao, J.K. (1996) Free radical pathology in schizophrenia. Prostaglandins Leukot. Essent. Fatty acids 55 (1–2), 33–43.

    PubMed  Article  CAS  Google Scholar 

  4. Cadet, J.L. and Kahler, L.A. (1994) Free radical mechanisms in schizophrenia and tardive dyskynesia. Neuro. Sci. Biobehav. Res. 18 (4), 457–467.

    Article  CAS  Google Scholar 

  5. Dusica, P. and Vesna, T. (2002) Oxidative stress as marker of positive symptoms in schizophrenia. Facta Universitatis. Medicine & Biology. 9 (2), 157–161.

    Google Scholar 

  6. Mahadik, S.P. and Scheffer, R.E. (1996) Oxidative injury and potential use of antioxidants in schizophrenia. Prostag. Leuko. Ess. 55, 45–54.

    Article  CAS  Google Scholar 

  7. Satoh, K. (1978) Serum lipid peroxide in cerebrovascular disorders determined by new colorimetric method. Clin. Chem. Acta 90, 37–43.

    Article  CAS  Google Scholar 

  8. Wasowicz, W., Neve, J and Peretz, A. (1993) Optimised Steps in Flourimetric Determination of Thiobarbituric Acid reactive substances in serum: Importance of extraction pH and influence of sample preservation and storage. Clin. Chem. 39 (12), 2522–2526.

    PubMed  CAS  Google Scholar 

  9. Stocks, J. and Dormondy, T.L. (1971) The auto oxidation of human red cell lipids induced by hydrogen peroxide. Br. J. Haematol. 20, 95–111.

    PubMed  Article  CAS  Google Scholar 

  10. Mc Cord and Fridovich, I. (1969) Superoxide dismutase on enzymatic function for erythrocumein. J. Biol. Chem. 24, 6049–6055.

    Google Scholar 

  11. Beauchamp, C. and Fridovich, I. (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. Review. 44, 276–287.

    Article  CAS  Google Scholar 

  12. Sun, Y., Oberley, L.W. and Li, Y. (1988) A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34, 497–500.

    PubMed  CAS  Google Scholar 

  13. Brannan, T.S., Maker, H.O. and Raess, I.P. (1981) Regional distribution of catalase in adult rat brain. J. Neurochem. 86, 307–309.

    Article  Google Scholar 

  14. Sinet, P.M., Heikkila, R.E. and Cohen, G. (1980) Hydrogen peroxide production from rat brain in vivo. J. Neurochem. 34, 1421–1428.

    PubMed  Article  CAS  Google Scholar 

  15. Drabkin, D.L. et al. (1932). J. Biochem. 98, 719.

    CAS  Google Scholar 

  16. Nikushkin, E.V., Kryzhanovski, G.N., Tupeer, I.R., Bordyukov, M.M. and Yuzefova, S.M. (1987). Blood antioxidant enzymes during epileptic activity. Bull. Ekesp. Biol. Med. 3, 297–299.

    Google Scholar 

  17. Smith, C.D., Carney, J.M., Sturke Reed, P.E., Oliver, C.N., Stadman, E.R., Floyd, R.A. and Markesbery, W.R. (1991) Excess brain protein oxidation and enzymes dysfunction in normal aging and in Alzheimer disease. Proc. Natl. Acad. Sci. USA. 88, 10540–10543.

    PubMed  Article  CAS  Google Scholar 

  18. Abdulla, D.S.P., Monteiro, I.I.P., Oliveira, J.A.C. and Bechara, E.J.H. (1986) Activities of Superoxide dismutase and glutathione peroxidase in Schizophrenic and manic depressive patients. Clin. Chem. 32 (5), 805–807.

    Google Scholar 

  19. Halliwell, B. (1989) Oxidants and central nervous system. Some fundamental questions. Acta. Neurol. Scand. 126, 23–33.

    CAS  Google Scholar 

  20. Glenberg, A.J., Bassuk, E.L. and Schoonover, S. (1991) The practitioner's guide to Psycho active drugs. New York Plenum Publishing Co. 143.

  21. Reddy, R., Mahadik, P.S., Sukdeb, M. and Jayasimha, N.M. (1991) Enzymes of the Antioxidant Defense System in Chronic Schizophrenic Patients. Biol. Psychiatry. 30, 409–412.

    PubMed  Article  CAS  Google Scholar 

  22. Yao, J.K., Ravinder, D.R. and Daniel, P. van Kammen. (1999) Human Plasma Glutathione Peroxidase and Symptom Severity in Schizophrenia. Biol. Psychiatry. 45, 1512–1515.

    PubMed  Article  CAS  Google Scholar 

  23. Janero, D.R. (1990) Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free radical Bio. Med. 9, 515–540.

    Article  CAS  Google Scholar 

  24. Pall, H.S., Williams, A.C., Blake, D.R. and Lunec, J. (1987) Evidence of enhanced lipid peroxidation in cerebrospinal fluid of patients taking phenothiazines. Lancet. 72, 535–539.

    Google Scholar 

  25. Mc. Credie, R.G., Mac Donald, E., Wiles, D., Campbell, G. and Peterson, J.R. (1995) The Nithsdale Schizophrenia Survey. XIV: Plasma lipid peroxide and serum Vitamin E levels in patients with and without tardive dyskinesia and in normal subjects. Br. J. Psychiatry 167, 610–617.

    Article  Google Scholar 

  26. Benedicta, D. and Vivian, D. (2003) Oxidative injury and antioxidant vitamins E and C in Schizophrenia. Ind. J. of Clin. Biochem. 18 (1), 87–90.

    Article  Google Scholar 

  27. Strunecka, A. and Ripova, D. (1999) What can the investigation of phosphoinositide signaling system in platelets of schizophrenic patients tell us? Prostaglandins Leukot Essent Fatty Acids. 61 (1), 1–5.

    PubMed  Article  CAS  Google Scholar 

  28. Heales, S.J.R., Barker, J.E., Stewart, V.C., Brand, M.P., Hargreaves, I.P., Land, J.M., Clark, J.B. and Bolanos, J.P. (1997) Nitric oxide energy metabolism and neurological disease. Biochem. Soc. Trans. 25 (3), 939–943.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rukmini, M.S., D'Souza, B. & D'Souza, V. Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients. Indian J Clin Biochem 19, 114–118 (2004). https://doi.org/10.1007/BF02894268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02894268

Key Words

  • Lipid peroxidation
  • Superoxide dismutase
  • Catalase
  • Schizophrenia