Skip to main content

Advertisement

Log in

The role of the envelope glycoprotein in the depletion of T helper cells in human immunodeficiency virus infection

  • Special Report
  • Published:
Pathology & Oncology Research

Abstract

Infection with the human immunodeficiency virus (HIV) causes gradual depletion of CD4+ T helper lymphocytes and destruction of the lymphoid tissue, which ultimately leads to a fatal defect of the cellular immune system. Paramount to the understanding of the pathogenesis of HIV infection is to elucidate the mechanism which underlies the loss of T helper cells. Various ideas have been proposed in order to explain this issue. Several hypotheses have focused on the role of the envelope glycoprotein in this process. This review summarizes the data obtained and concepts proposed regarding the involvement of the HIV glycoprotein in the pathology of CD4+ T cell depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HIV:

Human Immunodeficiency Virus

References

  1. Ho DD, Neumann AU, Perelson AS, et al: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Wei X, Ghosh SK, Taylor ME, et al.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Perelson AS, Neumann AU, Markowitz M, et al: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span; and viral generation time. Science 271:1582–1586, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Clerici M, Stocks NI, Zajac RA, et al. Detection of three distinct patterns of T helper cell dysfundction in asymptomatic; human immunodeficiency viruspositive patients. J Clin Invest 93:768–775, 1989.

    Article  Google Scholar 

  5. Shearer GM and Clerici M: Early T helper cell defects in HIV infection. AaS 5:245–253, 1991

    CAS  Google Scholar 

  6. Racz P: Spectrum of morphologic changes of lymph nodes from patients with AaS or AIDS related complexes. Progr Allergy 37:81–181, 1985.

    Google Scholar 

  7. Fauci AS: Multifactorial nature of human immunodeficiency virus disease: Implications for therapy. Science 262:1011–1018, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Gelderblom HR, Reupke H and Pauli G: Loss of envelope antigens of HTLV-I1I/LAV, a factor in AIDS pathogenesis. Lancet 2:1016–1017, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. McKeating JA, McKnight A and Moore JP: Differential loss of envelope glycoprotein from virions of human immunodeficiency virus type 1 isolates: effect on infectivity and neutralization. J Virol 65:852–860, 1991.

    PubMed  CAS  Google Scholar 

  10. Olshevsky K, Helseth E, Fitrman C, et al: Identification of individual human immunodeficiency virus type 1 gp 120 amino acids important for CD4 binding. J Virol 64:5701–5707, 1990.

    PubMed  CAS  Google Scholar 

  11. Pollard S, Rosa M, Rosa J and Wiley D: Truncated variants of gp 120 bind CD4 with high afimity and suggest a minimum CD4 binding region. EMBO J 11:585–591, 1992.

    PubMed  CAS  Google Scholar 

  12. Trkola A, Dragic T, Arthos J, et al: CD4-dependent, antibody-sensitive interactions between HIV-1 and its coreceptor CCR-5. Nature 384:184–187, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Wu L, Gerardi NP, Wyatt R, et al: CD4-induced interaction of primary HIV-1 gp 120 glycoproteins with the chernokine receptor CCR-5. Nature 384:179–183, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. AIkhatib G, Combardiere C, Broder CC, et al CCCKRS: A RANTES, MIP-1, MIP-1 receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958, 1996.

    Article  Google Scholar 

  15. Berson F, Long D, Doranz BJ, et al: A seven transmembrane domain receptor involved in fusion and entry of T-cell tropic human immunodeficiency virus type 1 strains. J Virol 70:1996.

  16. Choe H, Farzan M, Sun Y, et al: The j3-chemokine receptors CCR3 and CCRS facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Cocchi F, DeVico AL, Garzino-Demo A,et al. The V3 domain fo the HIV-1 gpl20 envelope glycoprotein is critical for chemokine- mediated blockade of infection. Nature Med 2:1244–1247, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Doranz BJ, Rucker J, Yi Y, et al: A dual tropic primary HIV-l isolate that uses fusion and the -chemokine receptors CKR-5, CKR- 3, and CKR-2b as fusion cofactors. Cell 85:1149–1158, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Dragic T, Litwin V Allaway GP, et al: HIV-1 entry into CD4+ T cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Feng Y, Broder CC, Kennedy PE and Berger EA: HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science 272:872–877, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Sattentau QJ, Moore JP, Vignaux F, et al: Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J Virol 67:7383–93, 1993.

    PubMed  CAS  Google Scholar 

  22. McCune JM, Rabin LB, Feinberg MB, et al: Endoproteolytic cleavage of gp 160 is required for the activation of the human immunodeficiency virus. Cell 53:55.67, 1988.

    Google Scholar 

  23. Lifson JD, Feinberg MB, Reyes GR, et al: Induction of CD4- dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323:725–728, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Lifson JD, Reyes GIZ, McGrath MC, et al: AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232:1123–1127, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Sodroski J, Goh WC, Rosen C, et al: Role of HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nat ire 322:470–474, 1986.

    CAS  Google Scholar 

  26. Harper M, Marselle LM, Gallo RC and Wong-Staal F: Detection of lymphocytes expresing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sei 83:772–776, 1986.

    Article  CAS  Google Scholar 

  27. Tenner-Racz K, Raez P, Bofill M, et al: HTLVII/LAV antigens in lymph nodes of homosexual men with persistent generalized lymphadenopathy and AaS. Am J Pathol 123:9–15, 1986.

    PubMed  CAS  Google Scholar 

  28. Baroni CD, Pezzella F, Pezzella M, et al: Expression of HIV in lymph node cells of LAS patients. Am J Pathol 133:498–506, 1988.

    PubMed  CAS  Google Scholar 

  29. Rinfret A, Eatendresse H, Lefebvre R, et al: Human immunodei- icienc virus-infected multinucleated histiocytes in oropharingeal lymphoid tissue from two asymptomatic patients. Am J Pathol 138:421–426, 1991.

    PubMed  CAS  Google Scholar 

  30. Kaaya E, Li SL, Feichtinger H, et al: Accessory cells and macrophages in the histopathology of SIVsm-infected cynomolgo- us monkeys. Res Virol 144:81–92, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Frankel SS, Wenig BM, Burke AP, et al.: Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272:115–117, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Navia BA, Cho E-S, Petito CK and Price RW: The AIDS dementia complex. II. Neuropathology. Ann Neurol 19: 525–535, 1986

    Article  PubMed  CAS  Google Scholar 

  33. Gulexieh SJ and Wiley CA: HIV infection and the brain. AIDS 5:S49-S54, 1991.

    Google Scholar 

  34. Margolis LB, Glushakova S, Baibakov B and Zimmerberg J: Syncytium formation in culutred human lymphoid tissue: fusion of implanted HIV glycoprotein 120/41-expressing cells with native CD4+ cells. AIDS Res Hum Retroviruses 11:697–704, 1995.

    PubMed  CAS  Google Scholar 

  35. Soll DR and Kennedy RC: The role of T cell motility and cytoskeletal reorganization in HIV-induced syncytium formation. AIDS Res Hum Retroviruses 10:325–327, 1994.

    PubMed  CAS  Google Scholar 

  36. Cheng-Mayer C, Seto D, Tateno M and Levy JA: Biologic features of HIV that correltae with virulence in the host. Science 240:80–82, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Tersmette M, Goede REY de, Bert JM, et al: Differential syncytium inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AaS) and AIDS-relat- ed complex. J Virol 62:2026–2032, 1988.

    PubMed  CAS  Google Scholar 

  38. Fenyő EM, Morfeldt-Manson L, Chiodi F, et al: Distinct replicative and cytopathic characteristices of human immunodeficiency virus isolates. J Virol 62:4414–4419, 1988.

    PubMed  Google Scholar 

  39. Fouchier RAM, Groenink M, Koostra NA, et al: Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp 120 molecule. J Virol 66:3183–3187,1992.

    PubMed  CAS  Google Scholar 

  40. Zhang L, Huang Y, He T. Cao Y andHo DD: HIV-1 subtype and second-receptor use. Nature 383:768, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Schuitemaker H, Koot M, Koostra NA, et al.: Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with ashift from mononcytotropic to T-cell-tropic virus population. J Virol 66:1354–1360, 1992.

    PubMed  CAS  Google Scholar 

  42. Nielsen C, Pedersen C, Lundgren JD and Gerstoft J: Biological properties of HIV isolates in primary HIV infection: consequences for the subsequent course of infection. AIDS 7:1035–1040, 1993.

    Article  PubMed  CAS  Google Scholar 

  43. Karlsson A, Parsmyr K, Sandstrom E, et al: MT-2 cell tropism as prognostic marker for disease progression in human immunodeficiency virus type 1 infection. J Clin Microbiol 32:364–370, 1994.

    PubMed  CAS  Google Scholar 

  44. Richman DDand Bozzette SA: The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 169:1994.

  45. Weiss CD, Barnett SW, Cacalano N, et al. Studies of HIV-1 envelope glycoprotein-mediated fusion using a simple fluorescence assay. AIDS 10:241–246, 1996.

    Article  PubMed  CAS  Google Scholar 

  46. Fodd BJ, Kedar P and Pope JH: Syncytium-induction in primary CD4+ T-cell lines from normal donors by human immunodeficiency virus type 1 isolates with non-syncytium-inducing genotype and phenotype in MT-2 cells. J Virol 69:7099–7105, 1995.

    Google Scholar 

  47. Pope M, Betjes MGH, Romani N, et al.: Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78: 389–398, 1994

    Article  PubMed  Google Scholar 

  48. Heinkelein M, Sopper S and Jassay C: Contact of human immunodeficiency virus type 1-infected and uninfected CD4+ T lymphocytes is highly cytolytic for both cells. J Virol 69:6925–6931, 1995.

    PubMed  CAS  Google Scholar 

  49. Jassoy C, Muller M, Kutsch O, et al: Quantitative analysis of the loss of uninfected CD4 T cells upon contact with HIV-infected cells. Convergence of AIDS and Cancer Research, Budapest, August 25–28. 1996; (Abstr. p.

  50. Levy JA: HIV and the pathogenesis of AIDS. ASM Press, Washington, 1994.

    Google Scholar 

  51. Koga Y, Sasaki M, Yoshida H, et al: Cytopathic effect determined by the amount of CD4 molecules in human cell lines expressing gp 160 of human immunodeficiency virus. J Immunol 144:94–102, 1990.

    PubMed  CAS  Google Scholar 

  52. Koga Y, Nakamura K, Sasaki M, et al: The difference in gp 160 and gp 120 of HIV type 1 in induction of CD4 downregulation precedes single-cell killing. Virology 201:137141, 1994.

    Article  Google Scholar 

  53. Lu YY, Koga Y, Fanaka M, Sasaki G, et al: Apoptosis induced in CD4+ cells expressing gp 160 of human immunodeficiency virus type 1. J Virol 68:390–399, 1994.

    PubMed  CAS  Google Scholar 

  54. Crise B, Bounocore L and Rose JK: CD4 is retained in the endoplasmatic reticulum by human immunodeficiency virus type 1 precursor. J Virol 64:5585–5593, 1990.

    PubMed  CAS  Google Scholar 

  55. Koga Y, Sasaki M, Yoshida H, et al: Disturbance of nuclear transport of proteins in CD4+ cells expressing gp 160 of human immunodeficiency virus. J Virol 65:5609–5612, 1991.

    PubMed  CAS  Google Scholar 

  56. Oh SK, Cruishank WW, Raina J, et al: Identification of HIV-1 envelope glycoproteins in the serum of AIDS and ARC patients. J Acqu Immune Def Syndr 5:251–256, 1992.

    CAS  Google Scholar 

  57. Daniel V, Susal C, Prodeus AP, et al: CD4+ lymphocyte depletin in HIV-infected patients is associated with gp 120-immunoglobu- lin-complement attachment to CD4+ cells. Vox Sang 64:31–36, 1993.

    PubMed  CAS  Google Scholar 

  58. Rosenstein Y, Burakoff SJ and Herrmann SH: HIV gp 120 can block CD4-ciass II MHC-mediated adhesion. J Immunol 144:526–531, 1994.

    Google Scholar 

  59. Shearer GM, Bernstein DC, Tung KSK,et al: A model fo the selective loss of major histocompatibility complex self restricted T-cell immune responses during the development of acquired immune deficiency syndrome (AIDS). J Immunol 137:2514–2521, 1986.

    PubMed  CAS  Google Scholar 

  60. Diamond DC, Sleckman BP, Gregory T, et al: Inhibition of CD4+ T cell function by the HIV envelope protein gpl20. J Immunol 141:3715–3721, 1988.

    PubMed  CAS  Google Scholar 

  61. Oyaizu N, Chirmule N, Kalyanaraman VS, et al: Human immunodeficiency virus type 1 envelope glycoprotein gp 120 produces immune defects in CD4+ T lymphcoytes by inhibiting interleukin 2 mRNA. Proc Natl Acad Sci 87:2379–2382, 1990.

    Article  PubMed  CAS  Google Scholar 

  62. Mann DL, Lasane F, Popovic M, et al: HTLV III large envelope protein (gp 120) suppresses PHA-induced lymphocyte pathogene - sis. J Immunol 138:2640–2648, 1987.

    PubMed  CAS  Google Scholar 

  63. Mittler RS and Hoffmann MK: Synergism between HIV gp 120 and gp 120-specific antibody in blocking human T cell activation. Science 245:1380–1382, 1989.

    Article  PubMed  CAS  Google Scholar 

  64. Goldman F, Jensen WA, Johnson GL, et al gp 120 ligation of CD4 induces p561ck activation and TCR desensitization independent of TCR tyrosine phosphorylation. J Immunol 153:2905–2917, 1994.

    PubMed  CAS  Google Scholar 

  65. Banda NK, Bernier J, Kurahara DK, et al: Crosslinking CD4 by human immunodeficiency virus gp 120 primes T cells for activation-induced apoptosis. J Exp Med 176:1099–1106, 1992.

    Article  PubMed  CAS  Google Scholar 

  66. Groux H, Torpier G, Monte D, et al: Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus- infected asymptomatic individuals. J Exp Med 175:331–340, 1992.

    Article  PubMed  CAS  Google Scholar 

  67. Finkel TH and Banda NK: Indirect mechanisms of HIV pathogenesis: how does HIV kill T cells? Curr Op Immunol 6:605–615, 1994.

    Article  CAS  Google Scholar 

  68. Blumberg RS, Paradis T, Hartshorn KL, et al: Antibody-dependent cell-mediated cytotoxicity against cells infected with the human immunodeficiency virus. J Infect Dis 156:878–884, 1987.

    PubMed  CAS  Google Scholar 

  69. Ljunggren K, Bottiger B, Biberfeld G, et al: Antibody-dependent cellular cytotoxicity-inducing antibodies against human immunodeficiency virus. J Immunol 139:2263–2267, 1987

    PubMed  CAS  Google Scholar 

  70. Lyerly HK;Matthews TJ, Langlois AJ, et al: Human T-cell lym- photropic virus Illb glycoprotein (gp 120) bound to CD4 determinants on normal lymphocytes and expressed by infected cells serves as target for immune attack. Proc Natl Acad Sci 84:4601–4605, 1987.

    Article  PubMed  CAS  Google Scholar 

  71. Rook AH, Lane HC, Folks T, et al: Sera from HTLV-III/LAV antibody-positive individuals mediate antibody-dependent cellular cytotoxicity against HTLVIII/LAV-infected cells. J Immunol 138:1064–1067, 1987.

    PubMed  CAS  Google Scholar 

  72. Clerici M, Shearer G, Hounsell EF, et al: Alloactivated cytotoxic T cells recognize the carboxy-terminal domain of human immun- odeficiency virus-1 gp 120 envelope glycoprotein. Eur J Immunol 23:2022–2025, 1993.

    Article  PubMed  CAS  Google Scholar 

  73. Silvestris F, Williams RC and Dammacco F: Autoreactivity in HIV- 1 infection: the role of molecular mimicry. Clin Immunol Immunopathol 75:197–205, 1995.

    Article  PubMed  CAS  Google Scholar 

  74. Akolkar PN, Chirmule N, Gulwani-Akolkar B, et al: V beta-specific activation of T cells by the HIV glycoprotein gp 160. Scand J Immunol 41:487–98, 1995:

    Article  PubMed  CAS  Google Scholar 

  75. Boldt-Houle DM, Rinaldo CR and Ehrlich GD: Random depletion of T cells that bear specific T cell receptor V beta sequences in AIDS patients. J Leukoc Biol 54: 486–491, 1993

    PubMed  CAS  Google Scholar 

  76. Boyer V,Smith LR, Erre F, et al: T cell receptor V beta repertoire in HIV infected individuals: lack of evidence for selective V beta depletion. Clin Exp Immunol 92:437–441, 1993.

    PubMed  CAS  Google Scholar 

  77. Wyllie AH, Kerr JFR and Currie AR: Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306, 1980.

    Article  PubMed  CAS  Google Scholar 

  78. Kerr JFR, Winterford CM and Harmon BV: Morphologic criteria for identifying apoptosis. In: Morphologic criteria for identifying apoptosis. (Eds: J. Celis), Academic Press, 1994, pp. 319–329.

  79. Meyaard L, Otto SA, Jonker RR, et al: Programmed death of T cells in HIV-1 infection. Science 257:217–219, 1992.

    Article  PubMed  CAS  Google Scholar 

  80. Gougeon M L, Garcia S, Heeney J, et al: Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Human Retrov 9:553–563, 1993.

    CAS  Google Scholar 

  81. Finkel TH, Tudor-Williams G, Banda NK, et al: Apoptosis occurs predominantly on bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nature Med 1:129–134, 1995.

    Article  PubMed  CAS  Google Scholar 

  82. Meyaard L and Miedema F: Programmed death of T cells in HIV infection: Result of immune activation? Curr Top Microbiol Immunol 200:213–221, 1995.

    PubMed  CAS  Google Scholar 

  83. Laurent-Crawford AG, Krust B, Midler S, et al: The cytopathic effect of HIV is associated with apoptosis. Virology 185:829–839, 1991.

    Article  PubMed  CAS  Google Scholar 

  84. Terai C, Kornbluth RS, Pauza CD, et al: Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J Clin Invest 87:1710–1715, 1991.

    Article  PubMed  CAS  Google Scholar 

  85. Heinkelein M, Jassoy C: Unpublished data.

  86. {au{fnLaurent-Crawford} {gnAG}}, {au{fnKrust} {gnB}}, {au{fnRiviere} {gnY}}, {eaet al}: {atMembrane expression of HIV envelope glycoproteins triggers apoptosis in CD4 cells}: {jtAIDS Res Hum Retrov} {vn9}:{pp761-773}, {dy1993}.

  87. Corbeil J and Richman DD: Productive infection and subsequent interaction of CD4-gp 120 at the cellular membrane is required for HIV-induced apoptosis of CD4+ T cells. J Gen Virol 76:681690, 1995.

    Article  Google Scholar 

  88. Maldarelli F, Sato H, Berthold E, et al: Rapid induction of apoptosis by cell-to-cell transmission of human immunodeficiency virus type 1. J Virol 69:6457–6465, 1995.

    PubMed  CAS  Google Scholar 

  89. Nardelli B, Gonzales CJ, Schechter M and Valentine FT: CD4+ blood lymphocytes are rapidly killed in vitro by contact with autol- ogous human immunodeficiency virus-infected cells. Proc Natl Acad Sci 92:7312–7316, 1995.

    Article  PubMed  CAS  Google Scholar 

  90. Kruger U, Pfeiffer T and Bosch V: Generation of lymphocyte cell lines coexpressing CD4 and wild-type or mutant HIV type 1 glycoproteins: Implications for HIV type 1 env-induced cell lysis. AIDS Res Hum Retrov 12:783–792, 1996.

    CAS  Google Scholar 

  91. Laurent-Crawford AG, Coccia E, KrustB and Hovanessian AG: Membrane-expressed HIV envelope glycoprotein heterodimer is a powerful inducer of cell death in uninfected CD4+ target cells. Res Virol 146:5–17, 1995.

    Article  PubMed  CAS  Google Scholar 

  92. Martin SJ, Matear PM and Vyakarnam A: HIV-1 infection of human CD4+ T cells in vitro. J Immunol 152:330–342, 1994.

    PubMed  CAS  Google Scholar 

  93. Zinkernagel RM and Hengartner H: T-cell mediated immunopathology versus direct cytolysis by virus: implications for HIV and AIDS. Immunol Today 15:262–268, 1994.

    Article  PubMed  CAS  Google Scholar 

  94. Jassoy C and WalkerBD: HIV-specific cytotoxic T lymphocytes and the control of HIV-1 replication. Springer Sem Immunopathol 18:in press, 1996.

  95. Haase AT, Henry K, Zupancie M, et al: Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274:985–989, 1996.

    Article  PubMed  CAS  Google Scholar 

  96. Levy JA, Ramachandran B, Barker E, et al. Plasma viral load, CD4+ cell counts, and HIV-1 production by cells. Science 271:670–671, 1996.

    Article  PubMed  CAS  Google Scholar 

  97. Piatak M, Saag MS, Yang LC, et al: High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259:1749–1754, 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jassoy.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft, the Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie and the Stifterverband für die Deutsche Wissenschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jassoy, C., Heinkelein, M. & Sopper, S. The role of the envelope glycoprotein in the depletion of T helper cells in human immunodeficiency virus infection. Pathol. Oncol. Res. 3, 62–67 (1997). https://doi.org/10.1007/BF02893356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02893356

Key words

Navigation