Skip to main content
Log in

Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories

  • Published:
Journal d’Analyse Mathématique Aims and scope

Astract

We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold,Small denominators and problems of stability of motion in classical and celestial mechanics, Uspekhi Mat. Nauk18 (1963), 91–192; translated in: Russian Math. Surveys18 (1963), 86–194.

    Google Scholar 

  2. P. Arnoux and G. Rauzy,Représentation géométrique de suites de complexité 2n+1, Bull. Soc. Math. France119 (1991), 199–215.

    MathSciNet  MATH  Google Scholar 

  3. V. Berthé, N. Chekhova and S. Ferenczi,Covering numbers: arithmetics and dynamics for rotations and interval exchanges, J. Analyse Math.79 (1999), 1–31.

    MATH  Google Scholar 

  4. M. Boshernitzan and C. Carroll,An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Analyse Math.72 (1997), 21–44.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Cassaigne,Complexité et facteurs spéciaux, Bull. Belg. Math. Soc.4 (1997), 67–88.

    MathSciNet  MATH  Google Scholar 

  6. E. M. Coven and G. A. Hedlund,Sequences with minimal block growth, Math. Systems Theory7 (1972), 138–153.

    Article  MathSciNet  Google Scholar 

  7. A. del Junco,A family of counterexamples in ergodic theory, Israel J. Math.44 (1983), 160–188.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Didier,Échanges de trois intervalles et suites sturmiennes, J. Théor. Nombres Bordeaux9 (1997), 463–478.

    MathSciNet  MATH  Google Scholar 

  9. X. Droubay, J. Justin and G. Pirillo,Epi-Sturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci.255 (2001), 539–553.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Durand,A characterization of substitutive sequences using return words, Discrete Math.179 (1998), 89–101.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Ferenczi,Rank and symbolic complexity, Ergodic Theory Dynam. Systems16 (1996), 663–682.

    MathSciNet  MATH  Google Scholar 

  12. S. Ferenczi,Systems of finite rank, Colloq. Math.73 (1997), 35–65.

    MathSciNet  MATH  Google Scholar 

  13. S. Ferenczi, C. Holton and L. Zamboni,The structure of three-interval exchange transformations I: an arithmetic study, Ann. Inst. Fourier51 (2001), 861–901.

    MathSciNet  MATH  Google Scholar 

  14. S. Ferenczi, C. Holton and L. Zamboni,The structure of three-interval exchange transformations III: ergodic and spectral properties; preprint 2001–26, http://iml.univ-mrs.fr/editions/preprint2001/preprint2001.html.

  15. C. Holton and L. Zamboni,Descendants of primitive substitutions, Theoret. Comput. Systems32 (1999), 133–157.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. B. Katok and A. M. Stepin,Approximations in ergodic theory, Uspekhi Mat. Nauk22 (1967), 81–106; translated in: Russian Math. Surveys22 (1967), 76–102.

    MathSciNet  MATH  Google Scholar 

  17. M. S. Keane,Interval exchange transformations, Math. Z.141 (1975), 25–31.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Morse and G. A. Hedlund,Symbolic dynamics II. Sturmian trajectories, Amer. J. Math.62 (1940), 1–42.

    Article  MathSciNet  Google Scholar 

  19. G. Rauzy,Échanges d'intervalles et transformations induites, Acta Arith.34 (1979), 315–328.

    MathSciNet  MATH  Google Scholar 

  20. R. Risley and L. Q. Zamboni,A generalization of Sturmian sequences: combinatorial structure and transcendence, Acta Arith.95 (2000), 167–184.

    MathSciNet  MATH  Google Scholar 

  21. M.-L. Santini-Bouchard,Échanges de trois intervalles, et suites minimales, Theoret. Comput. Sci.174 (1997), 171–191.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. A. Veech,The metric theory of interval exchange transformations I, II, III, Amer. J. Math.106 (1984), 1331–1421.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. M. Vershik and A. N. Livshits,Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Adv. Soviet Math.9 (1992), 185–204.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ferenczi.

Additional information

Partially supported by NSF grant INT-9726708.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferenczi, S., Holton, C. & Zamboni, L.Q. Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories. J. Anal. Math. 89, 239–276 (2003). https://doi.org/10.1007/BF02893083

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02893083

Keywords

Navigation