Skip to main content
Log in

Polymorphonuclear leukocyte mediated oxidative inactivation of alpha-1-proteinase inhibitor: Modulation by nitric oxide

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Alpha-1-proteinase inhibitor activity was studied in presence of resting and activated polymorphonuclear leucocytes. Four different agonists; phorbol myristic acetate, N-formyl-methionyl-leucyl-phenylalanine, opsonised zymosan and arachidonic acid decreased the inhibitor activity by 23.3%, 20%, 12% and 16.6^ respectively. The inhibitor activity was protected by using various free radical scavengers. Catalase and superoxide dismutase both restored activity by about 18%, mannitol by 13% and sodium azide by 17.3%. The inhibitor activity was also protected significantly by pretreatment of polymorphs with L-Arg, a precursor of nitric oxide, before activation. L-Arg was also observed to suppress the generation of superoxide and hydroxyl radical appreciably. The nitric oxide synthase inhibitor, aminoguanidine drastically inhibited the nitrite release and reversed the protection offered by L-Arg to the inhibitor activity. Our results indicate a multifactorial nature of the inactivation process, the culprit species being superoxide, hydrogen peroxide, hydroxyl radical and hypohalides. Nitric oxide seems to scavenge the superoxide radical directly after its formation rather than inhibiting its generation by NADPH oxidase as was believed earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malech, H. L., Gallin, M. D. (1987) Neutrophils in human disease. N. Engl. J. Med. 317, 687–694.

    PubMed  CAS  Google Scholar 

  2. Geiszt, M. and Leto, T.L. (2004) The Nox family of NAD(P)H oxidase: host defence and beyond. J. Biol. Chem. 279, 51715–51718.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn, M.T. and Gauss, K.A. (2004) Structure and regulation of the neutrophil respiratory burst: comparison with non-phagocyte oxidases. J. Leukoc. Biol. 76, 760–781.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, J.A. (1994) Neutrophils, host defense and inflammation: a double-edged sword. J. Leukoc. Biol. 56, 672–686.

    PubMed  CAS  Google Scholar 

  5. Sethi, S., Sing, M.P. and Dikshit, M. (1999) Nitric oxide- mediated augmentation of polymorphonuclear free radical generation after hypoxia-reoxygenation. Blood 93, 333–340.

    PubMed  CAS  Google Scholar 

  6. Carreras, M. C., Pargament, G. A., Catz, S. D., Poderoso, J. J. and Boveris, A. (1994) Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 341, 65–71.

    Article  PubMed  CAS  Google Scholar 

  7. Beckman, J.S., Chen, J., Ischiropoulos, H. and Crow, J.P. (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol. 233, 229–240.

    Article  PubMed  CAS  Google Scholar 

  8. Moreno-Manzano, V., Ishikawa, Y. and Lucio-Cazana J. (2000) Selective involvement of superoxide anion, but not downstream compounds hydrogen peroxide and peroxynitrite, in tumour necrosis factor-á-induced apoptosis of rat mesangial cells. J. Biol. Chem. 25, 12684–12691.

    Article  Google Scholar 

  9. Suzuki, Y.J., Forman, H.J., and Sevanian, A. (1997) Oxidants as stimulators of signal transduction. Free Radic. Biol. Med. 22, 269–285.

    Article  PubMed  CAS  Google Scholar 

  10. Rabadji, R.C., Brigagao, M.R.P.L., Camerero, V.C.P.C. and Colepicolo, P. (1996) Oscillation of reactive oxygen species released by activated neutrophils. Biological Rhythm Research 27, 269–280.

    Article  CAS  Google Scholar 

  11. Salvemini, D., Ischiropoulos, H. and Cuzzocrea, S. (2003) Roles of nitric oxide and superoxide in inflammation. Methods Mol. Biol. 225, 291–303.

    PubMed  CAS  Google Scholar 

  12. Ricciardolo, F.L.M. (2003) Multiple roles of nitric oxide in the airways. Thorax 58, 175–182.

    Article  PubMed  CAS  Google Scholar 

  13. Clancy, R.M., Leszczynska-Piziak, J. and Abramson, S.B. (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J. Clin. Invest. 90, 1116–1122.

    Article  PubMed  CAS  Google Scholar 

  14. Beckman, J.S. and Crow, J.P. (1993) Pathological importance of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. 21, 330–334.

    PubMed  CAS  Google Scholar 

  15. Rodenas, J., Mitjavila, M.T. and Carbonell, T. (1995) Simulataneous generation of nitric oxide and superoxide by inflammatory cells in rats. Free Radic. Biol. Med. 18, 869–875.

    Article  PubMed  CAS  Google Scholar 

  16. Ross, D, Indranil, D., Nathan, J. and Yedy, I. (1998) Effect of antithyroid drugs on hydroxyl radical formation and α-1-proteinase inhibitor inactivation by neutrophils: therapeutic implications. J. Pharm. Exp. Ther. 285, 1233–1238.

    CAS  Google Scholar 

  17. Brune, B. and Lapetine, E.G. (1989) Activation of cytosolic ADP-ribosyl transferase by nitric oxide generating agents. J Biol Chem 269, 8455–8461.

    Google Scholar 

  18. Piper, G.M., Clarke, G.A. and Gross, G.J. (1994) Stimulatory and inhibitory action of nitric oxide donor agentsvs nitrovasodilators on reactive oxygen production by isolated polymorphonuclear leukocytes. J Pharmacol. Exp. Ther. 269, 451.

    Google Scholar 

  19. Morikawa, M., Inoue, M., Tokumaru, S. and Kogo, H. (1995) Enhancing and inhibitory effects of nitric oxide on superoxide anion generation in human polymorphonuclear leukocytes. Br J Pharmacol 115, 1303.

    Google Scholar 

  20. Pryor, W.A., Dooley, M.M. and Church, D.F. (1984) Inactivation of human α-1-proteinase inhibitor by gas phase cigarette smoke. Biochim. Biophys. Res. Comm. 122, 676–681.

    Article  CAS  Google Scholar 

  21. Fagerhol, M.K. and Cox, D.W. (1981) The Pi polymorphism: Genetic, biochemical and clinical aspects of human α-1-antitrypsin. Adv. Human. Genet. 11, 1–10.

    CAS  Google Scholar 

  22. Travis, J. and Salvensen, G.S. (1983) Human plasma proteinase inhibitors. Ann. Rev. Biochem. 52, 655–709.

    Article  PubMed  CAS  Google Scholar 

  23. Beatty, K., Beith, J. and Travis, J. (1980) Kinetics of association of serine proteinases with native and oxidized α-1-proteinase inhibitor and α-1-antichymotrypsin. J. Biol. Chem. 255; 3931–3935.

    PubMed  CAS  Google Scholar 

  24. Arthur, B.Z. (1993) Genetic disease of the pulmonary parenchyma, In: Pulmonary disease (fifth ed.). Eds. Gerald L Baum and Emanuel Wolinsky), Boston: Little, Brown and company, pp 1785–1813.

    Google Scholar 

  25. Khan, A.R., Mir, M.M., Wani, J.I., Siddiqi, M.A. and Salahuddin, M. (1998) Superoxide generation by resting and activated polymorphonuclear leucocytes obtained from smokers and nonsmokers. Med. Sci. Res. 26, 471–473.

    CAS  Google Scholar 

  26. Glaser, C.B., Chamorro, M., Crowley, R., Karic, L., Childs, A. and Calderon, M. (1982) The isolation of α-1-proteinase inhibitor by a unique procedure designed for industrial application. Anal. Biochem. 124, 364–371.

    Article  PubMed  CAS  Google Scholar 

  27. Beatty, K., Beith, J. and Travis, J. (1982) Determination of oxidized alpha-1-proteinase inhibitor. J. Lab. Clin. Med. 100, 86–92.

    Google Scholar 

  28. Greenwald, R.A., Scott, W. Rush, S.A.M. and Zee, V.W. (1989) Conversion of superoxide generated by polymorphonuclear leucocytes to hydroxyl radical: A direct spectrophotometric detection system based on degradation of deoxyribose. Free. Radic. Biol. Med. 6, 385–392.

    Article  PubMed  CAS  Google Scholar 

  29. Bennett, B.M., Kobus, S.M., Brien, J.F., Nakatsu, K. and Marks, G.S. (1986) Requirement of reduced, unliganded hemoproteins for the hemoglobin and myoglobin mediated biotransformation of glyceryl trinitrite. J. Pharmacol. Exp. Ther. 237, 629–632.

    PubMed  CAS  Google Scholar 

  30. Babior, B.M., Lambeth, J.D. and Nauseef, W. (2002). The neutrophil NADPH oxidase. Arch. Biochem. Biophys. 397, 342–344.

    Article  PubMed  CAS  Google Scholar 

  31. Babior, B.M. (1999) NADPH oxidase: an update. Blood 93, 1464–1476.

    PubMed  CAS  Google Scholar 

  32. Leto, T.L., Garrett, M.C., Fujjii, H. and Nunoi, H. (1991) Characterization of neutrophil NADPH oxidase factor p47phox and p67 phox from recombinant baculoviruses. J. Biol. Chem. 266, 19812–19818.

    PubMed  CAS  Google Scholar 

  33. Hazan, I., Dana, R., Granot, Y. and Levy, R. (1997) Cytosolic phospholipase A2 and its mode of activation in human neutrophils by opsonized zymosan, correlation between 42/44 kDa mitogen-activated kinase, cytosolic phospholipase A2 and NADPH oxidase. Biochem. J 326, 867–876.

    PubMed  CAS  Google Scholar 

  34. Hazan, I., Seger, R. and Levy, R. (2000) The requirement of both extracellular regulatd kinase and p38 mitogen-activated protein kinase for stimulation of cytosolic phospholipase A2 activity by either FcγRII Aor FcαRIIIB in human neutrophils. J Biol. Chem. 275, 12416–12423.

    Article  Google Scholar 

  35. Shmelzer, Z., Haddad, N., Admon, E., Pessachh, I., Leto, T.L., Eitan-Hazan, Z., Hershfinkel, M. and Levy, R. (2003) Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by thhe NADPH oxidase in phagocytes. J. Cell Biol. 162, 683–692.

    Article  PubMed  CAS  Google Scholar 

  36. Foubert, T.R., Burritt, J.B., Taylor, R.M. and Jesaitis, A.J. (2000) Structural changes are induced in human neutrophil cytochrome b by NADPH oxidase activators, LDS, SDS, and arachidonate: intermolecular resonance energy transfer between trisulfopyrenyl-wheat germ agglutinin and cytochrome b558. Biochim. Biophys. Acta. 1557, 321–231.

    Google Scholar 

  37. Ueno, N., Murakami, M., Tanioka, T., Fujimori, K., Tanabe, T., Urade, Y. and Kudo, I. (2001) Coupling between cyclooxygenase, terminal prostanoid synthase, and phospholipase A2. J Biol. Chem. 276, 34918–34927

    Article  PubMed  CAS  Google Scholar 

  38. Tuluc, F., Garcia, A., Bredetean, O., Meshki, J. and Kunapuli S.P. (2004) Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. Am. J. Physiol. Cell Physiol. 287, 1264–1272.

    Article  CAS  Google Scholar 

  39. Crossley, L.J. (2003) Neutrophil activation by fMLP regulates FOXO (forkhead) transcription factors by multiple pathways, one of which includes the binding of FOXO to the survival factor Mcl-1. J. Leukoc. Biol. 74, 583–592.

    Article  PubMed  CAS  Google Scholar 

  40. Jacob, C., Szilagyi, C., Allen, J.M., Bertrand, C. and Lagente, V. (2004) Role of PDE4 in superoxide anion generation through p44/42 MAPK regulation: a cAMP and a PKA-independent mechanism, Br. J. Pharmacol. 143, 257–268.

    Article  PubMed  CAS  Google Scholar 

  41. Walters, J.D. and Nakkula, R.J. (2003) Ciprofloxacin transport by chemoattractant-activated polymorphonuclear leukocytes: regulation by priming and protein kinase C. Antimicrob. Agents Chemother. 47, 3345–3348.

    Article  PubMed  CAS  Google Scholar 

  42. Fujita, T., Zawawi, K.H., Kurihara, H. and Van Dyke, T.E. (2005) CD38 cleavage in fMLP- and IL-8-induced chemotaxis is dependent on p38 MAP kinase but independent of p44/42 MAP kinase. Cell Signal. 17, 167–75 (Medline).

    Article  PubMed  CAS  Google Scholar 

  43. Halliwell, B., Gutteridge, J.M.C. and Blake, D.R. (1985) Metal ion and oxygen radical reaction in human inflammatory joint disease. Phil. Trans. R. Soc. 311, 659–671.

    Article  CAS  Google Scholar 

  44. Aruoma, O.I., Halliwell, B. and Dizdaroglu, M. (1991) Copper ion dependent damage to the bases in DNA in presence of hydrogen peroxide. Biochem. J. 273, 601–604.

    PubMed  CAS  Google Scholar 

  45. Ambruso, D.R. and Johnson Jr., R.B. (1981) Lactoferin enhances hydroxyl radical production by human neurtophil, neutrophil particulate fractions and an enzyme generating system. J. Clin. Invest. 67, 352–360.

    Article  PubMed  CAS  Google Scholar 

  46. Palmer, R.M.J., Ferrige, A.G. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelial derived relaxing factor. Nature 327; 524–527.

    Article  PubMed  CAS  Google Scholar 

  47. Kubes, P., Suzuki, M. and Granger, D.N. (1991), Nitric oxide: an endogenous modulator of leucocyte adhesion. Proc. Natl. Acad. Sci. (USA). 88, 4651–4655.

    Article  CAS  Google Scholar 

  48. Mulligam, M.S., Hevel, J.M., Marletta, M.A. and Ward, P.A. (1991) Tissue injury caused by deposition of immune complexes is L-Arg dependent. Proc. Natl. Acad. Sci. (USA) 88, 6338–6341.

    Article  Google Scholar 

  49. Rubanyi, G.M., Ho, E.H., Cantor, E.H., Lumma, W.C. and Botelhi, L.H.P. (1991) Cytoprotective function of nitric oxide. Inactivation of superoxide radicals produced by human leukocytes. Biochem. Biophys. Res. Commun. 181, 1392–1395.

    Article  PubMed  CAS  Google Scholar 

  50. Peterson, D.A. (1992) The non-specificity of specific nitric oxide synthase inhibitors. Biochem. Biophys. Res. Commun. 187, 797–800.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Muzaffar Mir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir, M.M., Khan, A.R., Dar, N.A. et al. Polymorphonuclear leukocyte mediated oxidative inactivation of alpha-1-proteinase inhibitor: Modulation by nitric oxide. Indian J Clin Biochem 20, 184–192 (2005). https://doi.org/10.1007/BF02893068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02893068

Key Words

Navigation