Skip to main content
Log in

Transport properties of membrane vesicles fromAcholeplasma laidlawii

II. Kinetic characteristics and specificity of glucose transport system

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The glucose transport system of membrane vesicles isolated fromAcholeplasma laidlawii is saturable, with aK m of 21.2 μm andV of 0.68 nmol min−1 (mg protein)−1. The process is pH-dependent and a break occurs in the Arrhenius plot at 15°C. Exogenous substrates did not stimulate glucose transport probably due to their inability to penetrate into membrane vesicles. 3-O-Methylglucose and 6-deoxyglucose competitively inhibited glucose transport. Maltose inhibited transport of glucose noncompetitively. These sugars also elicited glucose efflux from preloaded membrane vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altendorf K., Staehelin L.: Orientation of membrane vesicles fromEscherichia coli as detected by freeze-cleave electron microscopy.J. Bacteriol. 117, 888 (1974).

    PubMed  CAS  Google Scholar 

  • Cho H. W., Morowitz H. J.: Characterization of the plasma membrane ofMycoplasma laidlawii.Biochim. Biophys. Acta 183, 295 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Cirillo V. P., Razin S.: Distribution of a phosphoenolpyruvate-dependent sugar phosphotransferase system inMycoplasma.J. Bacteriol. 113, 212 (1973).

    PubMed  CAS  Google Scholar 

  • Fedotov N. S., Panchenko L. F., Logatchev A. P., Bekkouzhin A. G., Tarshis M. A.: Transport properties of membrane vesicles fromAcholeplasma laidlawii cells. I. Isolation and general characteristics.Folia Microbiol. 20, 000 (1975).

    Google Scholar 

  • Konings W. N., Kaback H. R.: Anaerobic transport inEscherichia coli membrane vesicles.Proc. Nat. Acad. Sci. USA 70, 3376 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. J.: Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  • Rottem S., Razin S.: Sugar transport inMycoplasma gallisepticum.J. Bacteriol. 97, 787 (1969).

    PubMed  CAS  Google Scholar 

  • Sprott G. D., McLeod R. A.: Na+-dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors.Biochem. Biophys. Res. Commun. 47, 838 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Tarshis M. A., Migoushina V. L., Panchenko L. F., Fedotov N. S., Bourd H. I.: Studies of sugar transport inA. laidlawii cells.Eur. J. Biochem. 40, 171 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Van Demark P. J., Plackett P.: Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase inMycoplasma strain Y.J. Bacteriol. 111, 454 (1972).

    PubMed  Google Scholar 

  • Van Thienen G., Postma P. W.: Coupling between energy conservation and active transport of serine inEscherichia coli.Biochim. Biophys. Acta 323, 429 (1973).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchenko, L.F., Fedotov, N.S. & Tarshis, M.A. Transport properties of membrane vesicles fromAcholeplasma laidlawii . Folia Microbiol 20, 480–487 (1975). https://doi.org/10.1007/BF02891707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02891707

Keywords

Navigation