Skip to main content
Log in

Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

A field survey of metal concentrations and mycorrhizal status of plants growing on copper mine tailings was conducted in Anhui Province, China. Available phosphorus and organic matter in the tailings were very low. High concentrations of Pb, Zn, As and Cd as well as Cu were observed on some sites. The dominant plants growing on mine tailings belonged to the families Gramineae and Compositae, and the most widely distributed plant species wereImperata cylindrica, Cynodon dactylon andPaspalum distichum. Coreopsis drummondii also grew well on the arid sites but not on wet sites. Very low or zero arbuscular mycorrhizal (AM) fungal colonization was observed in most of the plants, but extensive mycorrhizal colonization was recorded in the roots ofC. drummondii andC. dactylon. Metal concentrations in plant tissues indicated that /.cylindrica andP. distichum utilized avoidance mechanisms to survive at high metal concentrations. The investigation suggests that remediation and revegetation of heavy metal contaminated sites might be facilitated by selection of tolerant plant species. Isolation of tolerant AM fungi may also be warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H. M., Zheng, C. R., Tu, C. et al., Heavy metals pollution in soils in China: status and countermeasures, Ambio., 1999, 28: 130.

    Google Scholar 

  2. Wong, M. H., Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils, Chemosphere, 2003, 50: 775.

    Article  PubMed  CAS  Google Scholar 

  3. Tordoff, G. M., Baker, A. J. M., Willis, A. J., Current approaches to the revegetation and reclamation of metalliferous mine wastes, Chemosphere, 2000, 41: 219.

    Article  PubMed  CAS  Google Scholar 

  4. van der Heijden, M. G. A., Klironomos, J. N., Ursic, M. et al., Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature, 1998, 396: 69.

    Article  CAS  Google Scholar 

  5. Genney, D. R., Hartley, S. H., Alexander, I. J., Arbuscular mycorrhizal colonization increases with host density in a heathland community, New Phytol., 2001, 152: 355.

    Article  Google Scholar 

  6. Leyval, C., Turnau, K., Haselwandter, K., Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects, Mycorrhiza, 1997, 7: 139.

    Article  CAS  Google Scholar 

  7. Haselwandter, K., Bowen, G. D., Mycorrhizal relations in trees for agroforestry and land rehabilitation, For. Ecol. Manage., 1996, 81: 1.

    Article  Google Scholar 

  8. Pawlowska, T. E., Blaszkowski, J., Ruhling, A., The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland, Mycorrhiza, 1996, 6: 499.

    Article  Google Scholar 

  9. Shetty, K. G., Banks, M. K., Hetrick, B. A. D. et al., Biological characterization of a southeast Kansas mining site, Water Air Soil Pollut., 1994, 78: 169.

    Article  CAS  Google Scholar 

  10. Shetty, K. G., Hetrick, B. A. D., Figge, D. A. H. et al., Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ. Pollut., 1994, 86: 181.

    Article  PubMed  CAS  Google Scholar 

  11. Griffioen, W. A. J., Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery, Mycorrhiza, 1994, 4: 197.

    Article  CAS  Google Scholar 

  12. Hildebrandt, U., Kaldorf, M., Bothe, H., The zinc violet and its colonization by arbuscular mycorrhizal fungi, J. Plant Physiol., 1999, 154: 709.

    CAS  Google Scholar 

  13. Raman, N., Nagarajan, N., Gopinathan, S. et al., Mycorrhizal status of plant species colonizing a magnesite mine spoil in India, Biol. Fertil. Soils, 1993, 16: 76.

    Article  Google Scholar 

  14. Weissenhorn, I., Leyval, C., Berthelin, J., Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal polluted soil, Plant Soil, 1993, 157: 247.

    Article  CAS  Google Scholar 

  15. Weissenhorn, I., Glashoff, A., Leyval, C. et al., Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal polluted and unpolluted soils, Plant Soil, 1994, 167: 189.

    Article  CAS  Google Scholar 

  16. Vangronsveld, J., Colpaert, J. V., Van Tichelen, K. K., Reclamation of a bare industrial area contaminated by non-ferrous metals: Physico-chemical and biological evaluation of the durability of soil treatment and revegetation, Environ. Pollut., 1996, 94: 131.

    Article  PubMed  CAS  Google Scholar 

  17. Khan, A.G, Kuek, C., Chaudhry, T.M. et al., Role of plants, mycorhizae and phytochelators in heavy metal contaminated land remediation, Chemosphere, 2000, 41: 197.

    Article  PubMed  CAS  Google Scholar 

  18. Leyval, C., Joner, E. J., del Val, C. et al., Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi, S., Schüepp, H., Barea, J. M. et al., Mycorrhizal technology in agriculture, Basel, Switzerland: Birkhäuser Verlag, 2002, 175–186.

    Google Scholar 

  19. Wang, Z. Y., Sun, Q. Y., Lu, Y. C., Rehabilitation of biotic community of copper mine tailings in Tongling copper mine, Chinese J. Ecol. (In Chinese), 2000, 19(3): 7.

    Google Scholar 

  20. Olsen, S. R., Cole, C. V., Watanabe, F. S. et al., Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDAAgric. Circ., 1954, 939: 1.

    Google Scholar 

  21. Murphy, J., Riley, J. P., A modified single solution method for the determination of phosphate in natural waters, Anal Chim. Acta., 1962, 27: 31.

    Article  CAS  Google Scholar 

  22. Sun, D. H., Waters, J. K., Mawhinney, T. P., Determination of thirteen common elements in food samples by inductively coupled plasma atomic emission spectrometry: Comparison of five digestion methods, J AOAC Int., 2000, 83: 1218.

    PubMed  CAS  Google Scholar 

  23. Sahrawat, K. L., Kumar, G. R., Rao, J. K., Evaluation of triacid and dry ashing procedures for determining potassium, calcium, magnesium, iron, zinc, manganese, and copper in plant materials, Comm. Soil Sci. Plant Anal., 2002, 33: 95.

    Article  CAS  Google Scholar 

  24. Phillips, J. M., Hayman, D. S., Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Br. Mycol. Soc., 1970, 55: 158.

    Article  Google Scholar 

  25. Giovannetti, M., Mosse, B., An evaluation of techniques for measuring vesiculararbuscular mycorrhizal infection in roots. New Phytol., 1980, 84P: 489.

    Article  Google Scholar 

  26. Gucwa-Przepiora, E., Turnau, K., Arbuscular mycorrhiza and plant succession on zinc smelter spoil heap in Katowice-Welnoviec, Acta Soc. Bot. Poloniae, 2001, 70: 153.

    Google Scholar 

  27. Turnau, K., Heavy metal content and localization in mycorrhizalEuphorbia cyparissias from zinc wastes in southern Poland, Acta Soc. Bot. Poloniae, 1998, 67: 105.

    CAS  Google Scholar 

  28. Shu, W. S., Zhang, Z. Q., Huang, L. N. et al., Pb, Zn and Cu tolerance and accumulation in populations ofPaspalum distichum, Acta Sci. Nat. Uni. Sun., 2000, 39(4): 82.

    CAS  Google Scholar 

  29. Shu, W. S., Zhang, Z. Q., Huang, L. N. et al., Use of tolerant population ofP. distichum for revegetation of a Pb/Zn mine tailings at Lechang: Field experiment, Acta Sci. Nat. Uni. Sun., 2000, 39(4): 94.

    CAS  Google Scholar 

  30. Zhao, F. J., McGrath, S. P., Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulatorThlaspi caerulescens, Plant Soil, 2003, 249: 37.

    Article  CAS  Google Scholar 

  31. Ma, L. Q., Komar, K. M., Tu, C. et al., A fern that hyperaccumulates arsenic, Nature, 2001, 409: 579.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, A., Hamel, C., Hamilton, R. I. et al., Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels, Mycorrhiza, 2000, 9: 331.

    Article  CAS  Google Scholar 

  33. Bi, Y. L., Li, X. L., Christie, P., Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus, Chemosphere, 2003, 50: 831.

    Article  PubMed  CAS  Google Scholar 

  34. Gildon, A., Tinker, P. B., Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas, New Phytol., 1983, 95: 247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Tang, X., Zhu, Y. et al. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Sci. China Ser. C.-Life Sci. 48 (Suppl 1), 156–164 (2005). https://doi.org/10.1007/BF02889814

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889814

Keywords

Navigation