Skip to main content
Log in

Epigenetic reprogramming in mammalian nuclear transfer

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

Somatic cloning has been succeeded in some species, but the cloning efficiency is very low, which limits the application of the technique in many areas of research and biotechnology. The cloning of mammals by somatic cell nuclear transfer (NT) requires epigenetic reprogramming of the differentiated state of donor cell to a totipotent, embryonic ground state. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. This review summarizes the roles of various epigenetic mechanisms, including DNA methylation, histone acetylation, imprinting, X-chromosome inactivation, telomere maintenance and expressions of development-related genes on somatic nuclear transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilmut, I., Schnieke, A. E., McWhir, J. et al., Viable offspring derived from fetal and adult mammalian cells, Nature, 1997, 385: 810–813.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell, K. H., McWhir, J., Ritchie, W. A. et al., Sheep cloned by nuclear transfer from a cultured cell line, Nature, 1996, 380: 64–66.

    Article  PubMed  CAS  Google Scholar 

  3. Kato, Y., Tani, T., Sotomaru, Y. et al., Eight calves cloned from somatic cells of a single adult, Science, 1998, 282: 2095–2098.

    Article  PubMed  CAS  Google Scholar 

  4. Baguisi, A., Behboodi, E., Melican, D. T. et al., Production of goats by somatic cell nuclear transfer, Nat. Biotechnol., 1999, 17: 456–461.

    Article  PubMed  CAS  Google Scholar 

  5. Wakayama, T., Perry, A. C. F., Zuccotti, M. et al., Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei, Nature, 1998, 394: 369–373.

    Article  PubMed  CAS  Google Scholar 

  6. Onishi, A., Iwamoto, M., Akita, T. et al., Pig cloning by microinjection of fetal fibroblast nuclei, Science, 2000, 289: 1188–1190.

    Article  PubMed  CAS  Google Scholar 

  7. Shin, T., Kraemer, D., Pryor, J. et al., A cat cloned by nuclear transplantation, Nature, 2002, 415: 859.

    Article  PubMed  CAS  Google Scholar 

  8. Chesne, P., Adenot, P. G., Viglietta, C. et al., Cloned rabbits produced by nuclear transfer from adult somatic cells, Nat. Biotechnol., 2002, 20: 366–369.

    Article  PubMed  CAS  Google Scholar 

  9. Wall, R. J., Kerr, D. E., Bondioli, K. R., Transgenic dairy cattle: genetic engineering on a large scale, J. Dairy Sci., 1997, 80: 2213–2224.

    Article  PubMed  CAS  Google Scholar 

  10. Wilmut, I., Cloning for medicine, Sci. Am., 1998, 279: 58–63.

    Article  PubMed  CAS  Google Scholar 

  11. Stice, S. L., Robl, J. M., Ponce de Leon, F. A. et al., Cloning: new breakthroughs leading to commercial opportunities, Theriogenology, 1998, 49: 129–138.

    Article  PubMed  CAS  Google Scholar 

  12. Wilmut, I., Beaujean, N., Somatic cell nuclear transfer, Nature, 2002, 419: 583–585.

    Article  PubMed  CAS  Google Scholar 

  13. Humpherys, D., Eggan, K., Akutsu, H. et al., Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei, Proc. Natl. Acad. Sci. USA, 2002, 99: 12889–12894.

    Article  PubMed  CAS  Google Scholar 

  14. Daniels, R., Hall, V., Trounson, A. O., Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei, Biol. Reprod., 2000, 63: 1034–1040.

    Article  PubMed  CAS  Google Scholar 

  15. Reik, W., Dean, W., Walter, J., Epigenetic reprogramming in mammalian development, Science, 2001, 293: 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, P. A., Takai, D., The role of DNA methylation in mammalian epigenetics, Science, 2001, 293: 1068–1070.

    Article  PubMed  CAS  Google Scholar 

  17. Gardiner-Garden, M., Frommer, M., CpG islands in vertebrate genomes, J. Mol. Biol., 1987, 196: 261–282.

    Article  PubMed  CAS  Google Scholar 

  18. Bird, A. P., Wolffe, A. P., Methylation-induced repression—belts, braces, and chromatin, Cell, 1999, 99: 451–454.

    Article  PubMed  CAS  Google Scholar 

  19. Kang, Y. K., Koo, D. B., Park, J. S. et al., Aberrant methylation of donor genome in cloned bovine embryos, Nat. Genet., 2001, 28: 173–177.

    Article  PubMed  CAS  Google Scholar 

  20. Dean, W., Santos, F., Stojkovic, M. et al., Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos, Proc. Natl. Acad. Sci. USA, 2001, 98: 13734–13738.

    Article  PubMed  CAS  Google Scholar 

  21. Bourc’his, D., Le Bourhis, D., Patin, D. et al., Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos, Curr. Biol., 2001, 11: 1542–1546.

    Article  PubMed  CAS  Google Scholar 

  22. Cezar, G. G., Bartolomei, M. S., Forsberg, E. J. et al., Genome-wide epigenetic alterations in cloned bovine fetuses, Biol. Reprod., 2003, 68: 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  23. Chung, Y. G., Ratnam, S., Chaillet, J. R. et al., Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos, Biol. Reprod., 2003, 69: 146–153.

    Article  PubMed  CAS  Google Scholar 

  24. Kang, Y. K., Yeo, S., Kim, S. H. et al., Precise recapitulation of methylation change in early cloned embryos, Mol. Reprod. Dev., 2003, 66: 32–37.

    Article  PubMed  CAS  Google Scholar 

  25. Kang, Y. K., Koo, D. B., Park, J. S. et al., Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome, J. Biol. Chem., 2001, 276: 39980–39984.

    Article  PubMed  CAS  Google Scholar 

  26. Davie, J. R., Covalent modifications of histones: expression from chromatin templates, Curr. Opin. Genet. Dev., 1998, 8: 173–178.

    Article  PubMed  CAS  Google Scholar 

  27. Finnin, M. S., Donigian, J. R., Cohen, A. et al., Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors, Nature, 1999, 401: 188–193.

    Article  PubMed  CAS  Google Scholar 

  28. Richon, V. M., Emiliani, S., Verdin, E. et al., A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases, Proc. Natl. Acad. Sci. USA, 1998, 95: 3003–3007.

    Article  PubMed  CAS  Google Scholar 

  29. Santos, F., Zakhartchenko, V., Stojkovic, M. et al., Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos, Curr. Biol., 2003, 13: 1116–1121.

    Article  PubMed  CAS  Google Scholar 

  30. Enright, B. P., Jeong, B. S., Yang, X. et al., Epigenetic characteristics of bovine donor cells for nuclear transfer: levels of histone acetylation, Biol. Reprod., 2003, 69: 1525–1530.

    Article  PubMed  CAS  Google Scholar 

  31. Enright, B. P., Kubota, C., Yang, X. et al., Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine, Biol. Reprod., 2003, 69: 896–901.

    Article  PubMed  CAS  Google Scholar 

  32. Shi, W., Hoeflich, A., Flaswinkel, H. et al., Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos, Biol. Reprod., 2003, 69: 301–309.

    Article  PubMed  CAS  Google Scholar 

  33. Lyon, M. F., X-chromosome inactivation, Curr. Biol., 1999, 9(7): R235–237.

    Article  PubMed  CAS  Google Scholar 

  34. Penny, G. D., Kay, G. F., Sheardown, S. A. et al., Requirement for Xist in the X chromosome inactivation, Nature, 1996, 379: 131–137.

    Article  PubMed  CAS  Google Scholar 

  35. Marahrens, Y., Panning, B., Dausman, J. et al., Xist-deficient mice are defective in dosage compensation but not spermatogenesis, Genes Dev., 1997, 11: 156–166.

    Article  PubMed  CAS  Google Scholar 

  36. Eggan, K., Akutsu, H., Hochedlinger, K. et al., X-chromosome inactivation in cloned mouse embryos, Science, 2000, 290: 1578–1581.

    Article  PubMed  CAS  Google Scholar 

  37. Wrenzycki, C., Lucas-Hahn, A., Herrmann, D. et al.,In vitro roduction and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos, Biol. Reprod., 2002, 66: 127–134.

    Article  PubMed  CAS  Google Scholar 

  38. Xue, F., Tian, X. C., Du, F. et al., Aberrant patterns of X chromosome inactivation in bovine clones, Nat. Genet., 2002, 31: 216–219.

    Article  PubMed  CAS  Google Scholar 

  39. Zakian, V. A., Telomeres: beginning to understand the end. Science, 1995, 270: 1601–1607.

    Article  PubMed  CAS  Google Scholar 

  40. Hackett, J. A., Feldser, D. M., Greider, C. W., Telomere dysfunction increases mutation rate and genomic instability, Cell, 2001, 106: 275–286.

    Article  PubMed  CAS  Google Scholar 

  41. Harley, C. B., Futcher, A. B., Greider, C. W., Telomeres shorten during aging of human fibroblast, Nature, 1990, 345: 458–460.

    Article  PubMed  CAS  Google Scholar 

  42. Holt, S. E., Shay, J. W., Wright, W. E., Refining the telomere-telomerase hypothesis of aging and cancer, Nat. Biotechnol., 1996, 14: 836–839.

    Article  PubMed  CAS  Google Scholar 

  43. Faragher, R. G., Kipling, D., How might replicative senescence contribute to human aging? Bioessays, 1998, 20: 985–991.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, N. W., Piatyszek, M. A., Prowse, K. R. et al., Specific association of human telomerase activity with immortal cells and cancer [see comments], Science, 1994, 266: 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  45. Shiels, P. G., Kind, A. J., Campbell, K. H. et al., Analysis of telomere lengths in cloned sheep, Nature, 1999, 399: 316–317.

    Article  PubMed  CAS  Google Scholar 

  46. Betts, D. H., Bordignon, V., Hill, J. R. et al., Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle, Proc. Natl. Acad. Sci. USA, 2001, 98: 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  47. Tian, X. C., Xu, J., Yang, X., Normal telomere lengths found in cloned cattle, Nature Genet., 2000, 26: 272–273.

    Article  PubMed  CAS  Google Scholar 

  48. Lanza, R. P., Cibelli, J. B., Blackwell, C. et al., Extension of cell life-span and telomere length in animals cloned from senescent somatic cells, Science, 2000, 288: 665–669.

    Article  PubMed  CAS  Google Scholar 

  49. Wakayama, T., Tateno, H., Mombaerts, P. et al., Nuclear transfer into mouse zygotes, Nat. Genet., 2000, 24: 108–109.

    Article  PubMed  CAS  Google Scholar 

  50. Barlow, D. P., Genomic imprinting in mammalian, Science, 1995, 270: 1610–1613.

    Article  PubMed  CAS  Google Scholar 

  51. Moor, T., Haig, D., Genomic imprinting in mammalian development: a parental tug-of-war, Trends Genet., 1991, 7: 45–49.

    Google Scholar 

  52. Davis, T. L., Yang, G. J., McCarrey, J. R. et al., The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development, Hum. Mol. Genet., 2000, 9: 2885–2894.

    Article  PubMed  CAS  Google Scholar 

  53. http://www.mgu.har.mrc.ac.uk/

  54. Jaenisch, R., DNA methylation and imprinting: why bother? Trends Genet., 1997, 13: 323–329.

    Article  PubMed  CAS  Google Scholar 

  55. Humpherys, D., Eggan, K., Akutsu, H. et al., Epigenetic instability in ES cells and cloned mice, Science, 2001, 293: 95–97.

    Article  PubMed  CAS  Google Scholar 

  56. Ogawa, H., Ono, Y., Shimozawa, N. et al., Disruption of imprinting in cloned mouse fetuses from embryonic stem cells, Reproduction, 2003, 126: 549–557.

    Article  PubMed  CAS  Google Scholar 

  57. Mann, M. R., Chung, Y. G., Nolen, L. D. et al., Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos, Biol. Reprod., 2003, 69: 902–914.

    Article  PubMed  CAS  Google Scholar 

  58. Young, L. E., Schnieke, A. E., McCreath, K. J. et al., Conservation of IGF2-H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer, Mech. Dev., 2003, 120: 1433–1442.

    Article  PubMed  CAS  Google Scholar 

  59. Kanka, J., Hozak, P., Heyman, Y. et al., Transcriptional activity and nucleolar ultrastructure of embryonic rabbit nuclei after transplantation to enucleated oocytes, Mol. Reprod. Dev., 1996, 43: 135–144.

    Article  PubMed  CAS  Google Scholar 

  60. Schultz, G. A., Harvey, M. B., Watson, A. J. et al., Regulation of early embryonic development by growth factors: Growth factor gene expression in cloned bovine embryos, J. Animal Sci., 1996, 75: 50–57.

    Google Scholar 

  61. Smith, S. D., Soloy, E., Kanka, J. et al., Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos, Mol. Reprod. Dev., 1996, 45: 444–450.

    Article  PubMed  CAS  Google Scholar 

  62. Lavoir, M. C., Kelk, D., Rumph, N. et al., Transcription and translation in bovine nuclear transfer embryos, Biol. Reprod., 1997, 57: 204–213.

    Article  PubMed  CAS  Google Scholar 

  63. Koo, D. B., Kang, Y. K., Choi, Y. H. et al., Developmental potential and transgene expression of porcine nuclear transfer embryos using somatic cells, Mol. Reprod. Dev., 2001, 58: 15–21.

    Article  PubMed  CAS  Google Scholar 

  64. Van Stekelenburg-Hamers, A. E., Rebel, H. G., Van Inzen, W. G. et al., Stage-specific appearance of the mouse antigenTEC-3 innormal and nuclear transfer bovine embryos: Re-expression after nuclear transfer, Mol. Reprod. Dev., 1995, 37: 27–33.

    Article  Google Scholar 

  65. Winger, Q. A., Hill, J. R., Shin, T. et al., Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei, Mol. Reprod. Dev., 2000, 56: 458–464.

    Article  PubMed  CAS  Google Scholar 

  66. Wrenzycki, C., Wells, D., Herrmann, D. et al., Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts., Biol. Reprod., 2001, 65: 309–317.

    Article  PubMed  CAS  Google Scholar 

  67. Daniels, R., Hall, V. J., French, A. J. et al., Comparison of gene transcription in cloned bovine embryos produced by different nuclear transfer techniques, Mol. Reprod. Dev., 2001, 60: 281–288.

    Article  PubMed  CAS  Google Scholar 

  68. Pesce, M., Schöler, H. R., Oct-4: Gatekeeper in the beginnings of mammalian development, Stem Cells, 2001, 19: 271–278.

    Article  PubMed  CAS  Google Scholar 

  69. Ezashi, T., Ghosh, D., Roberts, R. M., Repression of Ets-2-induced trans-activation of the tau interferon promoter by Oct-4, Mol. Cell Biol., 2001, 21: 7883–7891.

    Article  PubMed  CAS  Google Scholar 

  70. Du, Z., Cong, H., Yao, Z., Identification of putative downstream genes of Oct-4 by suppression-subtractive hybridization, Biochem. Biophys. Res. Commun., 2001, 282: 701–706.

    Article  PubMed  CAS  Google Scholar 

  71. Boiani, M., Eckardt, S., Scholer, H. R. et al., Oct4 distribution and level in mouse clones: consequences for pluripotency, Genes. Dev., 2002, 15: 1109–1119.

    Google Scholar 

  72. Bortvin, A., Eggan, K., Skaletsky, H. et al., Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei, Development, 2003, 130: 1673–1680.

    Article  PubMed  CAS  Google Scholar 

  73. Pan, G. J., Chang, Z. Y., Scholer, H. R. et al., Stem cell pluripotency and transcription factor Oct4, Cell Res., 2002, 12: 321–329.

    Article  PubMed  Google Scholar 

  74. Gong, G. C., Dai, Y. P., Fan, B. L. et al., Production of transgenic blastocysts by nuclear transfer from different types of somatic cells in cattle, Science in China Ser. C, 2004, 47(2): 183–189.

    Article  CAS  Google Scholar 

  75. Gong, G. C., Dai, Y. P., Fan, B. L. et al., Production of transgenic calves by somatic cell nuclear transfer, Chinese Science Bulletin, 2004, 49(2): 161–166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Li.

About this article

Cite this article

Li, S., Du, W. & Li, N. Epigenetic reprogramming in mammalian nuclear transfer. Chin. Sci. Bull. 49, 766–771 (2004). https://doi.org/10.1007/BF02889744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889744

Keywords

Navigation