Skip to main content
Log in

Distribution of magnetic shear angle at the ascending phase of cycle 23

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Using the vector magnetograms observed at Huairou Solar Observing Station of National Astronomical Observatories, the magnetic shear angles of solar active regions at the ascending phase of cycle 23 (1996–2000) were calculated. It is found that the statistical distribution of the magnetic shear angles can be fitted well by Gaussian curves. And the dominant sign of the magnetic shear angles is negative (positive) in the northern (southern) hemisphere. It is consistent with the N-S sign asymmetry of force-free field constant α and current helicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maunder, E.W., Note on the distribution of sun-spots in heliographic latitude, 1874–1902, NRAS, 1904, 64:747.

    Google Scholar 

  2. Neuton, M., Milson, A.S., Note on the observed differences in spottedness of the Sun’s northern and southern hemispheres, MNRAS, 1955, 115: 398.

    Google Scholar 

  3. Bell, B., A north-south asymmetry in location of solar sources of great geomagnetic storms, Astronomical Journal, 1961, 66: 38.

    Article  Google Scholar 

  4. Waldmeier, M., The asymmetry of solar activity in the years 1959–1969, Solar Phys., 1971, 20: 332.

    Article  Google Scholar 

  5. Carbonell, M., Oliver, R., Ballester, J. C., On the asymmetry of solar activity, Astron. Astrophys., 1993, 274: 497.

    Google Scholar 

  6. Reid, J. H., Cape lyot Hα-heliograph results: an analysis of flare activity 1958–1965, Solar Phys., 1968, 5: 207.

    Article  Google Scholar 

  7. Roy, J. R., The north-south distribution of major solar flare events, sunspot magnetic classes and sunspot areas (1955– 1974), Solar Phys., 1977, 52: 53.

    Article  Google Scholar 

  8. Wilson, R. M., Statistical aspects of solar flares, 1987, NASA Technical Paper 2714.

  9. Verma, V. K., On the increase of solar activity in the southern hemisphere during solar cycle 21, Solar Phys., 1987, 114: 185.

    Article  Google Scholar 

  10. Garcia, H. A., Evidence for solar-cycle evolution of north-south flare asymmetry during cycles 20 and 21, Solar Phys., 1990, 127: 185.

    Article  Google Scholar 

  11. Li, K. J., Schmiedel, B., Li, Q. S., Statistical analysis of the X-ray flares(M >= 1) during the maximum period of solar cycle 22, Astron. Astronphys. Suppl Ser., 1998, 131: 99.

    Article  Google Scholar 

  12. Richardson, R. S., The nature of solar hydrogen vortices, Astrophys. J., 1941, 93: 24.

    Article  Google Scholar 

  13. Ding, Y. J., Hong, Q. F., Wang, H. Z., A statistical study of the spiral spots on the solar disc, Solar Phys., 1987, 107: 22.

    Article  Google Scholar 

  14. Martin, S. F., Livi, S.H.B., in Eruptive Solar Flares (eds. Svestka, Z., Jackson, B.V., Machado, M. E.), Berlin: Springer- Verlag, 1992, 33.

    Chapter  Google Scholar 

  15. Martin, S. F., Mcallister, A. H., in Magnetodynamic Phenomena in the Solar Atmosphere, IAU Colloq. 153, Makuhari, Japan, 1995, 497.

  16. Rust, D. M., Kumar, A., Evidence for helically kinked magnetic flux ropes in solar eruptions, Astrophys. J., 1996, 464: L199.

    Article  Google Scholar 

  17. Pevtsov, A. A., Canfield, R. C., Metcalf, T. R., Latitudinal variation of helicity of photospheric magnetic fields, Astrophys. J., 1995, 440:L1099.

    Article  Google Scholar 

  18. Longcope, D. W., Fisher G. H., Pevtsov, A. A., Flux-tube twist resulting from helical turbulence: the sigma-effect, Astrophys. J., 1998, 507: 417.

    Article  Google Scholar 

  19. Bao, S. D., Zhang, H. Q., Patterns of current helicity for the twenty-second solar cycle, Astrophys. J., 1998, 496: L43.

    Article  Google Scholar 

  20. Zirin, H., Tanaka, K., The flares of August 1972, Solar Phys., 1973, 32: 173.

    Article  Google Scholar 

  21. Hagyard, M. J., Smith, J. B., Teuber, D. et al., A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring, Solar Phys., 1984, 91: 115.

    Article  Google Scholar 

  22. Wang, J. X., Development of magnetic shear, Solar Phys., 1994, 155: 285.

    Article  Google Scholar 

  23. Ai, G. X., Li, W., Zhang, H. Q., FeI λ5324.19 Å line forms in the solar magnetic field and the theoretical calibration of the solar magnetic field telescope, Acta Astron. Sinica, 1982, 23: 39.

    Google Scholar 

  24. Li, K. J., Yun, H. S., Gu, X. M., Hemispheric variation in solar activity, Astrophys. J., 2001, 554: 115.

    Article  Google Scholar 

  25. Verma, V. K., The distribution of the north-south asymmetry for the various activity cycles in The Solar Cycle (ed. Harvey, K. L.), San Francisco: Book Crafters Inc., 1992, 429.

    Google Scholar 

  26. Leka, K. D., Canfield, R. C., Mcclymont, A. N. et al., Evidence for current-carrying emerging flux, Astrophys. J., 1996, 426: 547.

    Article  Google Scholar 

  27. Longcope, D. W., Klapper, L., Dynamics of a thin twisted flux tube, Astrophys. J., 1997, 488: 443.

    Article  Google Scholar 

  28. Spruit, H. C., Motion of magnetic flux tubes in the solar convection zone and chromosphere, Astron. Astrophys., 1981, 98: 155.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dun Jinping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dun, J., Zhang, H., Zhang, B. et al. Distribution of magnetic shear angle at the ascending phase of cycle 23. Sci. China Ser. A-Math. 45 (Suppl 1), 12–18 (2002). https://doi.org/10.1007/BF02889678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889678

Keywords

Navigation