Skip to main content
Log in

Experimental study on the transition process to the oscillatory thermocapillary convections in a floating half zone

  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The transition process of the thermocapillary convection from a steady and axisymmetric mode to the oscillatory mode in a liquid bridge with a fixed aspect ratio and varied volume ratio was studied experimentally. To ensure the surface tension to play an important role in the ground-based experiment, the geometrical configuration of the liquid bridge was so designed that the associated dynamic Bond number Bd≈1. The velocity fields were measured by Particle Image Velocimetry (PIV) technique to effectively distinguish the different flow modes during the transition period in the experiments. Our experiments showed that as the temperature difference increased the slender and fat bridges presented quite different features on the evolution in their flow feature: for the former the thermocapillary convection transformed from a steady and axisymmetric pattern directly into an oscillatory one; but for the latter a transition flow status, characterized by an axial asymmetric steady convection, appeared before reaching the oscillatory mode. Experimental observations agree with the results of numerical simulations and it is obvious that the volume of liquid bridge is a sensitive geometric parameter. In addition, at the initial stage of the oscillation, for the former a rotating oscillatory convection with azimuthal wave number m=1 was observed while for the latter a pulsating oscillatory pattern with azimuthal wave number m=2 emerged, and then with further increase of the temperature difference, the pulsating oscillatory convection with azimuthal wave number m=2 evolved into a rotating oscillatory pattern with azimuthal wave number m=2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, W. R., Shu, J. Z., Zhou, R. Tang, Z. M.: Influence of liquid bridge volume on the onset of oscillation in floating zone convection. I. Experiments. J. Crystal Growth vol. 142, p. 385 (1994)

    Article  Google Scholar 

  2. Cao, Z. H., Xie, J. C., Tang, Z. M., Hu, W. R.: Experimental study on oscillatory thermocapillary convection. Sci. China vol. 35, p. 725 (1992)

    Google Scholar 

  3. Hirata, A., Sakurai, M., Ohishi, N., Koyma, M., Morita, T., Kawasaki, H.: Transition process from laminar to oscillatory Marangoni convection in a liquid bridge under normal and microgravity. J.Jpn. Soc. Microgravity Appl. Vol. 14, p. 137 (1997)

    Google Scholar 

  4. Monti, R., Castagnolo, D., Dell’ Aversana, P., Desiderio, G., Moreno, S., Evangelista, G.: An experimental and numerical analysis of thermocapillary flow of silicone oils in a micro-floating zone. Proceedings of the 43rd Cong. Int. Astro. Fed., Washington, DC, 1992

  5. Sumner, L. B. S., Neitzel, G. P., Fontaine, J.-P., Dell’Aversana, P.: Oscillatory thermocapillary convection in liquid bridges with highly deformed free surfaces: Experiments and energy-stability analysis. Phys. Fluids vol. 1, p. 107 (2001)

    Article  MATH  Google Scholar 

  6. Tang, Z. M, Hu, W. R.: Influence of liquid bridge volume on the onset of oscillation in floating zone convection II. Numerical simulation. J. Crystal Growth vol. 142, p. 385 (1994)

    Article  Google Scholar 

  7. Tang, Z. M, Hu, W. R.: Influence of liquid bridge volume on the onset of oscillation in floating zone convection III. Three-dimensional model. J. Crystal Growth vol. 207, p. 239 (1999)

    Article  Google Scholar 

  8. Shevtsova, V. M., Legros, J-C.: Oscillatory convective motion in deformed liquid bridges. Phys. Fluids vol. 7, p. 1621 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chun, Ch. H.: Marangoni convection in floating zone under reduced gravity. J. Crystal Growth vol. 48, p. 600 (1980)

    Article  Google Scholar 

  10. Schwabe, D., Scharmann, A.: Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts. J. Crystal Growth vol. 46, p. 125 (1979)

    Article  Google Scholar 

  11. Neitzel, G. P., Chang, K. T., Jankowski, D. F., Mittelmann, H. D.: Linear-stability of thermocapillary convection in a model of the floating-zone crystal-growth. Phys. Fluids A 5, p. 108 (1995)

    MATH  Google Scholar 

  12. Wanschura, M., Shevtsova, V. M., Kuhlmann, H. C., Rath, H.: Convective instability mechanisms in thermocapillary liquid bridges. Phys. Fluids vol. 7, p. 912 (1995)

    Article  MATH  Google Scholar 

  13. Chen, G., Lizee, A. Roux, B.: Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridge. J. Crystal Growth vol. 180, p. 638 (1997)

    Article  Google Scholar 

  14. Chen, Q. S., Hu, W. R.: Effect of liquid bridge volume on instability of floating half zone convection. Intl. J. Heat and Mass Transfer vol. 42, p. 825 (1998)

    Article  MATH  Google Scholar 

  15. Savino, R., Monti, R.: Oscillatory Marangoni convection in cylindrical liquid bridge. Phys. Fluids vol. 8, p. 2906 (1996)

    Article  MATH  Google Scholar 

  16. Yasuhiro, S., Sato, T., Imaishi, N.: Three dimensional oscillatory Marangoni flow in half-zone of Pr=1.02 fluid. Microgravity Sci. Technol. Vol. 10, p. 144 (1997)

    Google Scholar 

  17. Tang, Z. M, Hu, W. R.: A simulation model of a floating half zone. J. Crystal Growth vol. 192, p. 335 (1998)

    Article  Google Scholar 

  18. Smith, M. K., Davis, S. H.: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instability. J. Fluid Mech. Vol. 132, p. 119 (1983)

    Article  MATH  Google Scholar 

  19. Rupp, R., Mueller, G., Neumann, G.: Three-dimensional time dependent modeling of the Marangoni convection in zone melting configurations for the GaAs. J. Crystal Growth vol. 97, p. 34 (1989)

    Article  Google Scholar 

  20. Levenstam, M., Amberg, G.: Hydrodynamical instabilities of thermocapillary flow in a half-zone. J. Fluid Mech. Vol. 297, p. 357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, Z. M, Hu, W. R., Imaishi, N.: Two-bifurcation transitions of the floating half zone convection in a fat liquid bridge of large Pr number. Int1. J. Heat and Mass Transfer vol. 44, p. 1299 (2001)

    Article  MATH  Google Scholar 

  22. Tang, Z. M, A, Y., Cao, Z. H., Hu, W. R.: Two bifurcation transition processes in floating half zone convection of larger Prandtl number fluid. Acta Mechanica Sinica vol. 4, p. 328 (2002)

    Google Scholar 

  23. Chen, Q. S., Hu, W. R.: Instability from steady and axisymmetric to steady and symmetric floating half zone convection in a fat liquid bridge of larger Prandtl number. Chinese Physics Letter vol. 16, p. 822 (1999)

    Article  Google Scholar 

  24. Frank, S., Schwabe, D.: Temporal and spatial elements of thermocapillary convection in floating zones. Experiments in Fluids vol. 23 p. 234 (1997)

    Article  Google Scholar 

  25. Preisser, F., Schwabe, D., Scharmann, A.: Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. Vol. 126, p. 545 (1983)

    Article  Google Scholar 

  26. Velten, R., Schwabe, D., Scharmann, A.: The periodic instability of thermocapillary convection in cylindrical liquid bridges. Phys. Fluids vol. 3, p. 267 (1991)

    Article  Google Scholar 

  27. Lee, J., Lee, D. J., Lee, J. H.: On the mechanism of oscillation in a simulated floating zone. J. Crystal Growth vol. 152, p. 341 (1995)

    Article  Google Scholar 

  28. Zeng, Z., Mizuseki, H., Higashino, K., Kawazoe, Y.: Direct numerical simulation of oscillatory Marangoni convection in cylindrical liquid bridges. J. Crystal Growth vol. 204, p. 395 (1999)

    Article  Google Scholar 

  29. Lappa, M., Savino, R., Monti, R.: Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: influnce of geometrical aspect ratio. Int. J. Numer. Mech. Fluids vol. 36, p. 53 (2001)

    Article  MATH  Google Scholar 

  30. Host-Madsen, A., McCluskey, D. R.: On the accuracy and reliability of PIV measurements. Proc. of 7th Inter. Symp. on Appl. of Laser Tech. to Flow Measurement, Lisbon (1994)

  31. Ar, Y., Tang, Z. M., Han, J. H., Kang, Q., Hu, W. R.: The measurement of azimuthal velocity field for oscillatory thermocapillary convection. Microgravity Sci. Technol. Vol. 10, p. 129 (1997)

    Google Scholar 

  32. Lan, C. W., Kou, S.: Formulation for correcting optical distortions due to a transparent floating zone. J. Crystal Growth vol. 132, p. 471 (1993)

    Article  Google Scholar 

  33. Schwabe, D., Hintz, P., Frank, S.: New features of thermocapillary convection in floating zones revealed by tracer particle accumulation structures (PAS), Microgravity Sci. Technol., Vol. 9, p. 163 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aa, Y., Cao, Z.H., Tang, Z.M. et al. Experimental study on the transition process to the oscillatory thermocapillary convections in a floating half zone. Microgravity sci. Technol. 17, 5–13 (2005). https://doi.org/10.1007/BF02889515

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889515

Keywords

Navigation