Skip to main content
Log in

Dopaminerge Wirkung von Anisodamin auf die renale Mikrozirkulation der gespaltenen hydronephrotischen Rattenniere

Dopaminergic effect of anisodamine on the microcirculation of the hydronephrotic kidney of rats

  • Published:
Journal of Tongji Medical University Aims and scope Submit manuscript

Zusammenfassung

Anisodamin ist ein Alkaloid, welches aus der tibetanischen Pflanze “Anisodus tanguticus” gewonnen wird. In China wird Anisodamin seit 1965 zur Schockbehandlung verwendet. Der Wirkungsmechanismus ist bisher nicht aufgeklärt. In der vorliegenden Arbeit wurden die Wirkungen von Anisodamin auf die renale Mikrozirkulation der gespaltenen hydronephrotischen Rattenniere untersucht. Unter lokaler Applikation von 1X10-8 M bis 1X10-3 M Anisodamin kam es dosisabhängig zu einer signifikanten Dilatation der präglomerulären Gefäße, insbesondere Arteria arcuata, Arteria interlobularis und Vas afferens. Die maximale Zunahme der Lumendurchmesser betrug knapp 30%. Im Gegensatz zum präglomerulären Bereich führte Anisodamin am Vas efferens nahe dem Glomerulum und am Quellpunkt zu einer Vasokonstriktion. Die glomeruläre Durchblutung zeigte unter Anisodamin dosisabhängig einen Anstieg. Die Durchblutungszunahme betrug unter 1X10-3 M Anisodamin rund 50%. Haioperidol, ein Dopamin-Antagonist, verhinderte die durch Anisodamin hervorgerufene präglomeruläre Vasodilatation und hemmte auch den vasokonstriktorischen Effekt von Anisodamin auf postglomeruläre Gefäße. Unsere Untersuchungen belegen, daß Anisodamin durch eine präglomeruläre Vasodilatation (verbunden mit einer postglomerulären Vasokonstriktion) die Nierenfunktion entscheidend verbessern kann, hierbei wird eine Stimulation von Dopaminrezeptoren angenommen.

Abstract

Anisodamine is an alkaloid extracted from the Tibetan plant “Anisodus tanguticus”. Since 1965 it has been used in China for the treatment of shock but the mechanisms of its action are not fully known. The present study was performed to determined the effect of anisodamine on the renal microcirculation and to examine the underlying mechanism of its actions. The addition of anisodamine (10−8 M to 10−3 M) to the kidney bath resulted in a significant and dose dependent dilation of all preglomerular vessels. The maximal dilation (about 30 % dilation) was found in the proximal interlobular artery. In contrast to preglomerular vessels anisodamine caused constriction of postglomerular vessels. The glomerular blood flow increased by about 50 % at anisodamine concentration of 10−3 M. Haloperidol, a dopamine receptor antagonist could abolish the renal vascular effect of anisodamine. It is suggested that anisodamine could improve renal function by the dilation of preglomerular vessels in combination with the constriction of postglomerular vessels, and the effect of anisodamine may be mediated by activation of the dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature

  1. Department of Pediatrics, Peking Friendship Hospital. Anisodamine in treatment of some diseases with manifestations of acute microcirculatory insufficiency. Chinese Med J 1975; 1:127–32.

    Google Scholar 

  2. (654–2) 1985,16:317–22.

  3. Su JY, et al. Beneficial effect of anisodamine in hemorrhagic shock. Naunyn-Schmiedeberg’s Arch Pharmacol 1984;325:360–5.

    Article  CAS  Google Scholar 

  4. Su JY, et al. Experimental study in rabbits of the antishock effect of anisodamine (654–2) and its mechanism of action. Resuscitation 1983; 10:173–84.

    Article  PubMed  CAS  Google Scholar 

  5. 654–2 1982; 44–8.

  6. 1982;11-27.

  7. Steinhausen M, et al. Hydronephrosiss: A new method to visualize vas afferens, efferens and glomerular network. Kidney Int 1983, 23:794–806.

    Article  PubMed  CAS  Google Scholar 

  8. Steinhausen M, et al. Response of in vivo renal microvesseis to dopamine. Kidney Int 1986;30:361–70.

    Article  PubMed  CAS  Google Scholar 

  9. Bührle Ch Ph, et al. The afferent glomerular arterioie: Immunochemical and electrophysiological investigations. J Cardiovasc Pharmacol 1984;6:S383–93.

    PubMed  Google Scholar 

  10. Bührle Ch Ph, et al. Intracellular recording in ju xt a glomerular granulated cells of the mouse kidney. Pflügers Archiv 1984;400(suppl):R21.

    Google Scholar 

  11. Nobiling R, et al. The hydronephrotic kidney of the mouse as a tool for intravital microscopy and in vitro electrophysiological studies of renincontaining cells. Pflügers Archiv 1984;400 (suppl):R23.

    Google Scholar 

  12. Intaglietta M, et al. Capillary flow velocity in vivo and in situ by television methods. Microvasc Res 1975;10: 165–79.

    Article  PubMed  CAS  Google Scholar 

  13. Steinhausen M, et al. Angiotensin I control of the renal microcirculation: Effect of blockade by saralasin. Kidney Int 1986;30:56–61.

    Article  PubMed  CAS  Google Scholar 

  14. Parekh N, Veith U. Renal hemodynamics and oxygen consumption during postischemic acute renal failure in the rat. Kidney Int 1981;19:306–16.

    Article  PubMed  CAS  Google Scholar 

  15. Steinhausen M. Intravital microscope observation of acute renal failure as a tool for simultaneously analyzing structure and function. In: Acute Renal Failure: correlation between morphology and function; Marcel Dekker Inc. Kim Solez, Whelton A (ed) 1984;169–76.

    Google Scholar 

  16. Steinhausen M, et al. Pathophysiological mechanisms of acute renal failure. Contr Nephrol 1981; 25:151–6.

    CAS  Google Scholar 

  17. Oken DE. Hemodynamic basis for human acute renal failure (vasomotor nephropathy). Am J Med 1984;76:702–7.

    Article  PubMed  CAS  Google Scholar 

  18. 1980,19:303–5.

  19. Department of Pharmacology, Chinese Academy of Medical Sciences. Pharmacologic effects of anisodamine. Chinese Med J 1975, 1:133–8.

    Google Scholar 

  20. Marin-Grez M, et al. Atrial natriuretic peptide causes preglomerular vasodilation and postglomerular constriction in rat kidney. Nature 1986;324:473–6.

    Article  PubMed  CAS  Google Scholar 

  21. Marin-Grez M, et al. Dopamine receptor antagonists inhibit the natriuretic response to atrial natriuretic factor (ANF). Life Sci 1985;36:2171–6.

    Article  PubMed  CAS  Google Scholar 

  22. Petterson A, et al. The diuretic effect of atrial natriuretic peptide (ANP) is dependent on dopaminergic activation. Acta Physiol Scand 1986;126:619–21.

    Article  CAS  Google Scholar 

  23. 1981;13:277–81.

  24. 1985; 17:161–4.

  25. Nichols AJ, Hiley CR. Identification of adrenoceptors and dopamine receptor mediating vascular responses in the superior mensenteric arterial bed of the rat. J Pharm Pharmacol 1985;37:110–5.

    PubMed  CAS  Google Scholar 

  26. Yeh BK et al. Attenuation of dopamine renal and mesentric vasodilation by haloperidol: evidence for a specific dopamine receptor. J Pharmacol Exp Ther 1969;168:303–9.

    PubMed  CAS  Google Scholar 

  27. Fuller RW, et al. Elevation of serum corticosterone in rats by dopamine agonists related in structure to pergolide. Neuroendocrinology 1983; 36:285–90.

    Article  PubMed  CAS  Google Scholar 

  28. Fuller RW, Snoddy HD. Serum corticosterone elevation by pergolide in rats: Prevention of tolerance development by spiperone. J Pharm Pharmacol 1982; 34:607–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai-ping, Z., Parekh, N. & Steinhausen, M. Dopaminerge Wirkung von Anisodamin auf die renale Mikrozirkulation der gespaltenen hydronephrotischen Rattenniere. Journal of Tongji Medical University 11, 65–72 (1991). https://doi.org/10.1007/BF02888091

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02888091

Schlüsselwörter

Navigation