Skip to main content
Log in

A simulation method of combinding boundary element method with generalized Langevin dynamics

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

A new simulation approach to incorporate hydration force into generalized Langevin dynamics (GLD) is developed in this note. The hydration force determined by the boundary element method (BEM) is taken into account as the mean force terms of solvent including Coulombic interactions with the induced surface charge and the surface pressure of solvent. The exponential model is taken for the friction kernel. A simulation study has been performed on the cyclic undecapeptide cyclosporin A (CPA). The results obtained from the new method (GLDBEM) have been analyzed and compared with that obtained from the molecular dynamics (MD) simulation and the conventional stochastic dynamics (SD) simulation. We have found that the results obtained from GLDBEM show the obvious improvement over the SD simulation technique in the study of molecular structure and dynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rossky, P. J., Simon, J. D., Dynamics of chemical processes in polar solvents, Nature, 1994, 370: 263.

    Article  PubMed  CAS  Google Scholar 

  2. Karplus, M., Petsko, G. A., Molecular dynamics simulations in biology, Nature, 1990, 347: 631.

    Article  PubMed  CAS  Google Scholar 

  3. van Gunsteren. W. F., Weiner, P. K., Wilkinson, A., J. Computer Simulation of Biomolecular System: Theoretical and Experimental Application. Vol. 2. The Netherlands: Leidon ESCOM, 1993.

    Google Scholar 

  4. Wan, S. Z., Wang, C. X., Shi Y. Y., Grneralized Langevin dynamics simulation: Numerical integration and application of generalized Langevin equation with an exponential model for the friction kernel, Mol. Phys, 1998, 93: 901.

    Article  CAS  Google Scholar 

  5. Shi, Y. Y., Wang, L., van Gunsteren, W. F., On the approximation of solvent effects on conformation and dynamics of cyclosporin A by stochastic dynamics simulation techniques, Mol. Simul., 1988, 1: 369.

    Article  CAS  Google Scholar 

  6. Zauhar, R. J., The incorporation of hydration forces determined by continuum electrostatics into molecular mechanics simulations, J. Comput. Chem., 1991, 12: 575.

    Article  CAS  Google Scholar 

  7. Gilson, M. K., Davis, M. E., Luty B. A. et at., Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem., 1993, 97: 3591.

    Article  CAS  Google Scholar 

  8. Sharp, K., Incorporating solvent and ion screening into molecular dynamics using the finite-difference Poisson-Boltzmann method, J. Comput. Chem. 1991, 12: 454.

    Article  CAS  Google Scholar 

  9. Gilson, M. K., McCammon, J. A., Madura, J. D., Molecular dynamics simulation with continuum electrostatic model of the solvent, J. Comput. Chem., 1995, 16: 1081.

    Article  CAS  Google Scholar 

  10. Wang, C. X., Wan, S. Z., Xiang Z. X. et al., Incorporating hydration force determined by boundary element method into stochastic dynamics, J. Phys. Chem., 1997, 102: 230.

    Google Scholar 

  11. van Gunsteren, W. F., Berendsen H. J. C., A leap-frog algorithm for stochastic dynamics, Mol. Simulation, 1988, 1: 173.

    Article  Google Scholar 

  12. Yoon, B. J., Lenhoff, A. M., A boundary element method for molecular electrostatics with electrolyte effects. J. Comput. Chem., 1990. 1: 1080.

    Article  Google Scholar 

  13. Zauhar, R. J., Morgan, R. S., A new method for computing the macromolecular electric potential, J. Mol. Biol., 1985, 186: 815

    Article  PubMed  CAS  Google Scholar 

  14. Xiang, Z. X., Huang, F. H., Shi, Y. Y., Calculation of solvation energy with a combination of the boundary element method and PDLD model. J. Phys. Chem., 1994, 98: 12782.

    Article  CAS  Google Scholar 

  15. van Gunsteren. W. F., Berendsen, H. J. C., Groningen Molecular Simulation (GROMOS) Library Manual, Groningen: Biomos, 1987.

    Google Scholar 

  16. Juffer, A. H., Botta, E. F. F., van Keulen B. A. M. et al., The electric potential of a macromolecule in a solvent: A fundamenlial approach, J. Comput. Phys., 1991, 97: 144.

    Article  CAS  Google Scholar 

  17. Loosli, H. R., Kessler H., Oschkinat, H. et al., Peptide conformations, Part 31, The conformation of cyclosporin A in the crystal and in solution. Helv. Chim. Acta. 1985, 68: 682.

    Article  CAS  Google Scholar 

  18. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. et al., Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, 81: 3684.

    Article  CAS  Google Scholar 

  19. Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C., Numericdi integration of the Cartesian equations of motion of a system with constrains: Molecular dynamics ofn-alkanes, J. Comput. Phys., 1977, 23: 327.

    Article  CAS  Google Scholar 

  20. Fraternali, F., van Gunsteren, W. F., An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution. J. Mol. Biol., 1996, 256: 939.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunxin Wang.

About this article

Cite this article

Chen, W., Lu, B. & Wang, C. A simulation method of combinding boundary element method with generalized Langevin dynamics. Chin. Sci. Bull. 45, 2227–2231 (2000). https://doi.org/10.1007/BF02886358

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886358

Keywords

Navigation