Skip to main content
Log in

Asphaltenes in oil reservior recovery

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

Asphaltene is one of the important compositions in oil reservoirs, while it is also a major factor that causes difficulties in oil recovery and oil post-processings. Up to date, study on asphaltenes in oil recovery is still a bottleneck problem. In this paper, the advances of studies on asphaltenes are reviewed, and some directions for further studying are suggested. What is reviewed in the paper includes the precipitation studies of asphaltenes, the degradation studies of asphaltenes and the applications of asphaltene’s studying in oil recovery; furthermore, it is regarded as a promising direction to study the possible applications of asphaltene’s selectively decomposing by chemical reagents in oil recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speight, J.G., Asphaltenes in crude oil and bitumen: structure and dispersion. Adv. Chem. Ser., 1996, 251 (Suspensions: Fundamentals and Applications in Petroleum Industry): 377.

    Google Scholar 

  2. Mansoori, G.A., Modeling of asphaltene and other heavy organic depositions, Journal of Petroleum Science and Engineering, 1997, 17: 101.

    Article  CAS  Google Scholar 

  3. Hirschberg, A., The role of asphaltenes in compositional grading of a reservoir’s fluid column, SPE Paper No. 13171, 1984.

  4. Hirschberg, A., De Jong, L.N.J., Schipper, B.A. et al., Influence of temperature and pressure on asphaltene flocculation, SPE 11202, 1984, 283.

    Google Scholar 

  5. Park, S.J., Mansoori, G.A., Aggregation and deposition of heavy organics in petroleum crudes, Energy Sources, 1988, 10: 109.

    Article  CAS  Google Scholar 

  6. Wilhelms, A., Larter, S.R., Origin of tar-mats in petroleum reservoirs, Part I: introduction and case studies, Marine and Petroleum Geology, 1994, 11(4): 418.

    Article  CAS  Google Scholar 

  7. Wilhelms, A., Larter, S.R., Origin of tar-mats in petroleum reservoirs, Part II: formation mechanisms for tar-mats, Marine and Petroleum Geology, 1994, 11(4): 442.

    Article  CAS  Google Scholar 

  8. Larter, S.R., Aplin, A.C., Reservior geochemistry: methods, applications and opportunities, The Geochemistry of Reserviors, Geological Society Special Publication No. 86, 1995, 5.

  9. Wilhelms, A., Larter, S.R., Overview of the geochemistry of some tar-mats from the North Sea and USA: implications for tar-mat origin, The Geochemistry of Reserviors, Geological Society Special Publication No. 86, 1995, 87.

  10. Pernyeszi, T., Patzko, A., Berkesi, O. et al., Asphaltene adsorption on clays and crude oil reservoir rocks, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 137: 373.

    Article  CAS  Google Scholar 

  11. Tissol, B.P., The geochemistry of resins and asphaltenes, Characterization of Heavy Crude Oils and Petroleum Residues (in Chinese), Beijing: Petroleum Industry Press, 1989, 2.

    Google Scholar 

  12. Speight, J.G., Long, R.B., The concept of asphaltenes revisited, Fuel Science and Technology Int’ L., 1996, 14(1& 2): 1.

    CAS  Google Scholar 

  13. Storm, D. A., Sheu, E.Y., Characterization of colloidal asphaltenic particles in heavy oil, Fuel, 1995, 74(8): 1140.

    Article  CAS  Google Scholar 

  14. Leontaritis, K.J., The asphaltene and wax deposition envelopes, Fuel Science and Technology Int’ L., 1996, 14(1& 2): 13.

    CAS  Google Scholar 

  15. Yang Zhao, Guo Tianmin, The review of studies on asphaltene’s precipitation, Petroleum Exploration and Development (in Chinese), 1997, 24(5): 98.

    Google Scholar 

  16. Mannistu, K.D., Yarranton, H.W., Masliyah, J.H., Solubility modeling of asphaltenes in organic solvents, Energy & Fuels, 1997, 11: 615.

    Article  CAS  Google Scholar 

  17. Storm, D.A., DeCanio, S.J., DeTar, M.M. et al., Upper bound on number average molecular weight of asphaltenes, Fuel, 1990, 69(6): 735.

    Article  CAS  Google Scholar 

  18. Liu, Y.C., Sheu, E.Y., Chent, S.H. et al., Fractal structure of asphaltenes in toluene, Fuel, 1995, 74(9): 1352.

    Article  CAS  Google Scholar 

  19. Xu Yingnian, Yoshikata Koga, Strausz, O.P., Characterization of Athabasca asphaltenes by small-angle X-ray scattering, Fuel, 1995, 74(7): 960.

    Article  Google Scholar 

  20. Bardon, Ch., Barre, L., Espinat, D. et al., The colloidal structure of crude oils and suspensions of asphaltenes and resins, Fuel Science and Technology Int L., 1996, 14(I & 2): 203.

    CAS  Google Scholar 

  21. Sheu, E.Y., Storm, D.A., Shields, M.B., Adsorption kinetics of asphaltenes at toluene/acid solution interface, Fuel, 1995, 74(10): 1475.

    Article  CAS  Google Scholar 

  22. Tojima, M., Suhara, S., Imamura, M. et al., Effect of heavy asphaltene on stability of residual oil, International Symposium on Advances in Catalysis and Processes for Heavy Oil Conversion, Presented before the Division of Petroleum Chemistry, Inc. 213th National Meeting, American Chemical Society, San Francisco, CA, April 13–17, 1997, 504.

  23. Storm, D.A., Barresi, R.J., De Canio, S.J., Colloidal nature of vacuum residue, Fuel, 1991, 70(6): 779.

    Article  CAS  Google Scholar 

  24. Laux, H., Rahimian, I., Boundaries of colloid stability of crude oils, Erdöl, Erdgas und Kohle, 1998, 114(1): 25.

    CAS  Google Scholar 

  25. Victorov, A.I., Firoozabadi, A., Thermodynamic micellization model of asphaltene precipitation from petroleum fluids, AIChE Journal, 1996, 42(6): 1753.

    Article  CAS  Google Scholar 

  26. Chang Chia-Lu, Fogler, H.S., Peptizalion and coagulation of asphaltenes in a polar media using oil-soluble polymers, Fuel Science and Technology Int L. 1996, 14(1& 2): 75.

    Google Scholar 

  27. Fotland, P., Anfindsen, H., Electrical conductivity of asphaltenes in organic solvents, Fuel Science and Technology Int’L. 1996, 14(1& 2): 101.

    CAS  Google Scholar 

  28. Fotland, P., Precipitation of asphaltenes at high pressures: experimental technique and results, Fuel Science and Technology Int L. 1996, 14(1& 2): 313.

    CAS  Google Scholar 

  29. Taylor, S.E., The electrodeposition of asphaltenes and implications for asphaltene structure and stability in crude and residual oils, Fuel, 1998, 77(8): 821.

    Article  CAS  Google Scholar 

  30. Yutaka Koinuma, Satoshi Kushiyama, Reiji Aizawa et al., Distribution of heteroatoms in asphaltenes separated from Khafji residue before and after hydrotreatment as studied by GPC fractionation, International Symposium on Advances in Catalysis and Processes for Heavy Oil Conversion, Presented before the Division of Petroleum Chemistr, Inc. 213th National Meeting, American Chemical Society, San Francisco, CA, April 13–17, 1997, 331.

  31. Andersen, S.I., Stenby, E.H., Thermodynamics of asphaltene precipitation and dissolution investigation of temperature and solvent effects, Fuel Science and Technology Int’L. 1996, 14(1& 2): 261.

    CAS  Google Scholar 

  32. MacMillan, D.J., Tackeff Jr., J.E., Jessee, M.A. et al., A unified approach to asphaltene precipitation: laboratory measurement and modeling, JPT, 1995, 9: 788.

    Google Scholar 

  33. Buckley, J.S., Microscopic investigation of the onset of asphaltene precipitation. Fuel Science and Technology Int’L. 1996, I4(1& 2): 55.

    Google Scholar 

  34. Storm, D.A., Sheu, E.Y., Flocculation of asphaltenes in heavy oil at elevated temperatures, Fuel Science and Technology Int’L. 1996, 14(1& 2): 243.

    CAS  Google Scholar 

  35. Clarke, P.F., Pruden, B.B., The development of an onset-of-precipitation detection technique using heat transfer analysis, Fuel Science and Technology Int’L. 1996, 14(1& 2): 117.

    CAS  Google Scholar 

  36. Clarke, P.F., Pruden, B.B., Asphallene precipitation: detection using heat transfer analysis, and inhibition using chemical additives, Fuel, 1997, 76(7): 607.

    Article  CAS  Google Scholar 

  37. Laux, H., Kopsch, H., Rahimian, I., About formation of coke in the cracking of crude oil residues (3)-modelling. Erdöl, Erdgas und Kohle, 1996, 112(7/8): 319.

    CAS  Google Scholar 

  38. Matthew Neurock, Klein, M.N., Molecular reaction modelling of the thermal pathways and kinetics of heavy hydrocarbon systems, Symposium on Petroleum Chemistry and Processing, Presented before the Division of Petroleum Chemistry, Inc. 210th National Meeting, American Chemical Society. Chicago, IL, August 20–25, 1995, 700–704.

  39. Michels, R., Langlois, E., Ruau, O. et al., Evolution of asphaltenes during artificial maturation: a record of the chemical processes, Energy & Fuels, 1996, 10: 39.

    Article  CAS  Google Scholar 

  40. Wilhelms, A., Larter, S.R., Characterization of asphaltenes by pyrolysis-field ionization mass spectrometry some observations, Org. Geochem., 1993, 20(7): 1049.

    Article  CAS  Google Scholar 

  41. Delvaux, D., Martin, H., Leplat, P. et al., Comparative Rock-Eval pyrolysis as an improved tool for sedimentary organic matter analysis, Org. Geochem. 1990, 16(4–6): 1221.

    Article  CAS  Google Scholar 

  42. Tissot, B.P., Pelet, R., Ungerer, P.H., Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation, The American Association of Petroleum Geologists Bulletin, 1987, 71(12): 1445.

    CAS  Google Scholar 

  43. Primio, R.D., Horsfield, B., Predicting the generation of heavy oils in carbonate/evaporitic environments using pyrolysis methods, Org. Geochem., 1996, 24(10/11): 999.

    Article  Google Scholar 

  44. Peng Yusheng, Ji Huasheng, Liang Chunxiu, The Custody Studies on Microbial Enhanced Oil Recovery (in Chinese) Beijing: Petroleum Industry Press, 1997, 9: 258.

    Google Scholar 

  45. Donaldson, E.C., Chilingarian, G.V., Yen, T.F., Microbial Enhanced Oil Recovery (in Chinese), Beijing: Petroleum Industry Press, 1995, 4, 143.

    Google Scholar 

  46. Yu Qitai, The strategy and method or enhanced oil recovery, Atta. Petrolei Sinica (in Chinese), 1996, 17(2): 53.

    Google Scholar 

  47. Donaldson, E.C., Chilingarian, G.V., Yen, T.F., Enhanced Oil Recovery, II: Processes and Operations (in Chinese), Beijing: Petroleum Industry Press, 1992, 1: 379.

    Google Scholar 

  48. Surguchev, M.L., The Means of Secondary and Tertiary Enhanced Oil Recovery (in Chinese), Beijing: Petroleum Industry Press, 1993, 12: 182.

    Google Scholar 

  49. Ekweozor, C.M., Characterization of the non-asphaltene products of mild chemical degradation of asphaltenes, Org. Geochem., 1986, 10: 1053.

    Article  CAS  Google Scholar 

  50. Butler, R.M., Thermal Recovery of Oil and Bitumen (in Chinese), Beijing: Petroleum Industry Press, 1994, 9: 312.

    Google Scholar 

  51. Gorbunov, A.T., Bucheikov, L.N., The Alkaline Water Drive (in Chinese), Beijing: Petroleum Industry Press, 1995, 1: 207.

    Google Scholar 

  52. Wang Yunfeng, Zhang Chun’guang, Hou Wan’guo et al., The Surfactants and Their Applications in Oil-gas Fields (in Chinese), Beijing: Petroleum Industry Press, 1995, 6: 293.

    Google Scholar 

  53. Littmann, W., Polymer Flooding (in Chinese), Beijing: Peroieum Industry Press, 1991, 8: 107.

    Google Scholar 

  54. Economides, M.J., Nolte, K.G., Technologies of Enhanced Oil Recovery (in Chinese), Beijing: Petroleum Industry Press, 1991, 12: 376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zewen Liao.

About this article

Cite this article

Liao, Z., Geng, A. Asphaltenes in oil reservior recovery. Chin.Sci.Bull. 45, 682–688 (2000). https://doi.org/10.1007/BF02886171

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886171

Keywords

Navigation