Chinese Science Bulletin

, Volume 45, Issue 2, pp 101–108 | Cite as

Research and applications of biochip technologies

  • Junquan Xu
  • Xuezhong He
  • Yuxiang Zhou
  • Litian Liu
  • Jing ChengEmail author


Biochip as a new research field has enjoyed its rapid development in the past 10 years. Using microfabrication technology, thousands or hundred thousands of biological molecules can be assembled on a centimeter square microchip. Those chip-based devices can be used to analyze mutations, antigens, cells, etc. Compared with the traditional analytical instruments, chip-based micro total analytical systems have many advantages, such as reduced size, lower consumption of both reagents and energy, contamination-free, etc. Biochip technology is believed to revolutionize the future research in life sciences, disease diagnosis, drug discovery, forensic sciences and outer space exploitation in the coming century.


biochip disease diagnosis pharmacogenomics laboratory-on-a-chip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fodor, S. P. A., Read, J. La., Pirning, M. C. et al., Light-directed spatially addressable parallel chemical synthesis, Science, 1991, 251:767.PubMedCrossRefGoogle Scholar
  2. 2.
    Marshall, A., Hodgson, J., DNA chips: An array of possibilities, Nature Biotechnology, 1998, 16: 27.PubMedCrossRefGoogle Scholar
  3. 3.
    Kricha, L. J., Miniaturization of analytical systems, Clinical Chemistry, 1998, 44: 2088.Google Scholar
  4. 4.
    Service, R. F., Microchip arrays put DNA on the spot, Science, 1998, 282: 396.PubMedCrossRefGoogle Scholar
  5. 5.
    Kricha, L. J., Revolution on a square centimeter, Nature Biotechnology, 1998, 16: 513.CrossRefGoogle Scholar
  6. 6.
    Goffeau, A., Molecular fish on chips, Nature, 1997, 385: 202.PubMedCrossRefGoogle Scholar
  7. 7.
    Kricka, L. J., Wilding, P., Microfabricated Immunoassay Devices, in Principles & Practice of Immunoassay (2nd edition). (eds. Price, C. P., Newman, D. J.), London: Macmillan Press, 1995.Google Scholar
  8. 8.
    Belgrader, P., Smith, J. K., Weedn, V. W. et al., Rapid pathogen detection using a microchip PCR array instrument, Clinical Chemistry, 1998, 44:2191.PubMedGoogle Scholar
  9. 9.
    Cheng, J., Mann, A. S., Georgi, E. H. et al., Chip PCR. II. Investigation of different PCR amplification systems in microfabricated silicon-glass chips, Nucleic Acids Research, 1996, 24: 380.PubMedCrossRefGoogle Scholar
  10. 10.
    Woolley, A. T., Hadley, D., Landre, P. et al., Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device, Analytical Chemistry, 1996, 68: 4081.PubMedCrossRefGoogle Scholar
  11. 11.
    Kricka, L. J., Ji, X., Nozaki, S. et al., Sperm testing with microfabricated glass-capped silicon microchannels, Clinical Chemistry, 1994, 41: 1211.Google Scholar
  12. 12.
    Kricka, L. J., Fam, I., Heyner, S. et al., Micromachined glass structures for in vitro fertilization (IVF), Clinical Chemistry, 1995, 41: 1358.Google Scholar
  13. 13.
    McConnell, H. M., Owicki, J. C., Kercso, K. M. et al., The cytosensor microphysiometer: biological applications of silicon technology, Science, 1992, 257: 1906.PubMedCrossRefGoogle Scholar
  14. 14.
    Debouck, C., Goodfellow, P. N., DNA microarrays in drug discovery and development, Nature Genetics, 1999, 21: 48.PubMedCrossRefGoogle Scholar
  15. 15.
    Stipp, D., Gene chip breakthrough, Fortune, 1997, 135: 56.Google Scholar
  16. 16.
    The runners-up, Science, 1998, 282: 2157.Google Scholar
  17. 17.
    McGall, G., Labadie, J., Brock, P. et al., Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists, Proceedings of the National Academy of Sciences of the USA, 1996, 93: 13555–13560.PubMedCrossRefGoogle Scholar
  18. 18.
    Schena, M., Shalon, D., Heller, R. et al., Parallel human genome analysis: microarray-based expression monitoring of 1 000 genes, Proceedings of the National Academy of Sciences of the USA. 1996, 93: 10614.PubMedCrossRefGoogle Scholar
  19. 19.
    Blanchard, A. P., Kaiser, R. H., Hood, L. E., High-density oligonucleotide arrays, Biosensors & Bioelectronics, 1996, 11: 687.CrossRefGoogle Scholar
  20. 20.
    Cheng, J., Kricka, L. J., Sheldon, E. L. et al., Sample preparation in microstructured devices, Microsystem Technology in Chemistry and Life Science (eds. Manz, A., Becher, H.), a special volume in Topics in Current Chemistry, Heidelberg: Springer, 1998, 215–231.Google Scholar
  21. 21.
    Markx, G. H., Huang, Y., Zhou, X. F. et al., Dielectrophoretic characterization and separation of micro-organisms. Microbiology, 1994, 140: 585.CrossRefGoogle Scholar
  22. 22.
    Cheng, J., Sheldon, E. L., Wu, L. et al., Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip, Analytical Chemistry, 1998, 70: 2321.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng, J., Waters, L. C., Fortina, P. et al., Multiplex PCR analysis of Ducheene/Becher muscular dystrophin gene by microchip-bayed devices, Analytical Biochemistry, 1998, 257: 101.PubMedCrossRefGoogle Scholar
  24. 24.
    Northrup, M. A., Ching, M. T., White, P. M. et al., DNA amplification with microfabricated reaction chamber, Proceeding of the 7th International Conference on Solid-State Sensors and Actuators, 1993, 924–926.Google Scholar
  25. 25.
    Taylor, T. B., Winn-Deen, E. S., Picozza, E. et al., Optimization of the performance of the polymerase chain reaction in silicon based microstructures, Nucleic Acids Research, 1997, 25: 3164.PubMedCrossRefGoogle Scholar
  26. 26.
    Kopp, M. U., de Mello, A. J., Manz, A., Chemical amplification: Continuous-flow PCR on a chip, Science, 1998, 280: 1046.PubMedCrossRefGoogle Scholar
  27. 27.
    Manz, A., Harrison, D. J., Verpoorte, E. M. J. et al., Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoreisis on a chip, Journal of Chromatography, 1992, 593: 253.CrossRefGoogle Scholar
  28. 28.
    Wooley, A. T., Mathies, R. A., Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips, Proceedings of the National Academy of Sciences of the USA, 1994, 91: 11348.CrossRefGoogle Scholar
  29. 29.
    Cheng, J., Waters, L. C., Fortina, P. et al., Degenerate oligonucleotide primed-polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices, Analytical Biochemistry, 1998, 257:101.PubMedCrossRefGoogle Scholar
  30. 30.
    Chee, M., Yang, R., Hubbell, E. et al., Accessing geneticsic information with high density DNA arrays, Science, 1996, 274: 610.PubMedCrossRefGoogle Scholar
  31. 31.
    Hacia, J. G., Resequencing and mutational analysis using oligonucleotide microarrays, Nature Genetics, 1999, 21: 42.PubMedCrossRefGoogle Scholar
  32. 32.
    Hacia, J. G., Brody, L. C., Chee, M. S. et al., Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis, Nature Genetics, 1996, 14: 441.PubMedCrossRefGoogle Scholar
  33. 33.
    Duggan, D. J., Bittner, M., Chen, Y. et al., Expression profiling using cDNA microarrays, Nature Genetics, 1999, 21: 10.PubMedCrossRefGoogle Scholar
  34. 34.
    Lockhart, D. L., Dong, H., Byrne, M. C. et al., Expression monitoring by hybridization to high-density oligonucleotide arrays, Nature Biotechnology, 1996, 14: 1675.PubMedCrossRefGoogle Scholar
  35. 35.
    DeRisi, J., Penland, L., Brown, P. O. et al., Use of a cDNA microarray to analyse gene expression patterns in human cancer, Nature Genetics, 1996, 14: 457.PubMedCrossRefGoogle Scholar
  36. 36.
    Bassett, D. E. Jr., Eisen, M. B., Boguski, M. S., Gene expression informatics—it’s all in your mine, Nature Genetics, 1999, 21:51.PubMedCrossRefGoogle Scholar
  37. 37.
    Chakravarti, A., Population genetic—making sense out of sequence, Nature Genetics, 1999, 21: 56.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng, J., Edward, L. S., Wu, L. et al., Reparation and hybridization analysis of DNA/RNA fromE. coli on microfabricated bioelectronic chips, Nature Biotechnology, 1998, 16: 541.PubMedCrossRefGoogle Scholar
  39. 39.
    Lemmo, A. V., Fisher, J. T., Geysen, H. M. et al., Characterization of an inkjet chemical microdispenser for combinatorial library synthesis, Analytical Chemistry, 1997, 69: 543.CrossRefGoogle Scholar
  40. 40.
    Jacobs, J. W., Fodor, S. P. A., Combinatorial chemistry-applications of light-directed chemical synthesis. Trends in Biotechnolopy, 1994, 12: 19.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Junquan Xu
    • 1
  • Xuezhong He
    • 1
  • Yuxiang Zhou
    • 1
    • 2
  • Litian Liu
  • Jing Cheng
    • 1
    • 2
    Email author
  1. 1.Biochip Research and Development CenterTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Biomembrane and Membrane Biotechnology School of Biological Sciences and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations