Science in China Series A: Mathematics

, Volume 46, Issue 4, pp 450–458

On automorphism groups of some finite groups

Article
  • 42 Downloads

Abstract

We show that if n > 1 is odd and has no divisor p4 for any prime p, then there is no finite group G such that |Aut(G)| = n.

Keywords

finite group automorphism of group group construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Machale, D., Some finite groups which are rarely automorphism group, Proc. R. Ir. Acad., 1983, 83A: 189–196.MathSciNetGoogle Scholar
  2. 2.
    Curran, M. J., Automorphisms of certain p-groups (p odd), Bull. Austral. Math. Soc., 1988, 38: 299–305.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Li, S. R., Finite groups with automorphism group of order p3q, Proc. R. Ir. Acad., 1994, 94A: 193–218.Google Scholar
  4. 4.
    Li, S. R., Automorphism groups of some finite groups, Science in China (in Chinese), 1993, 23(12): 1276–1282.Google Scholar
  5. 5.
    Li, S. R., Finite groups whose automorphism group has order cubefree[J], Chin. Ann. Math., 1997, 18B(3): 301–308.Google Scholar
  6. 6.
    Sanders, P. R., The central automorphism of a finite group, J. London Math. Soc., 1969, 44: 225–228.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gorenstein, D., Finte Groups, New York: Harper and Row, 1968, 175–188.Google Scholar
  8. 8.
    Huppert, B., Endlich Gruppen I, Berlin/Heidelberg/New York: Springer-Verlag, 1979, 310–321.Google Scholar
  9. 9.
    Isaacs, I. M., Character Theory of Finite Groups, New York: Academic Press, 1976, 14–95.MATHGoogle Scholar
  10. 10.
    Riedl, J. M., Fitting height of solvable groups with few character degrees, J. Algebra, 2000, 233: 287–308.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ban, G. N., Ban, G. L., Solution of Curran’s Conjectures, Advances in Math (in Chinese), 1996, 25(2): 159–161.MATHMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.Department of MathematicsSuzhou UniversitySuzhouChina
  2. 2.Department of MathematicsChangshu CollegeChangshuChina

Personalised recommendations