Skip to main content

Generalized Fourier-Mehler transforms on white noise functional spaces

Abstract

A new (non-unitary) representation of the general linear group of white noise space on Hida’ s test and distribution spaces is presented. The relevant representative operators are natural generalization of Fourier-Mehler transforms.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Hida, T., Kuo, H. H., Obata, N., Transformation for white noise functionals,J. Funct. Anal., 1993, 111: 259.

    Article  Google Scholar 

  2. 2

    Hida, T., Obata, N., Kaitô, K., Infinite dimensional rotations and Laplacians in terms of white noise calculus,Nagoya Math. J., 1992. 128: 65.

    Google Scholar 

  3. 3

    Obata, N.,White Noise Calculus and Fock Space, New York: Springer. 1994.

    Google Scholar 

  4. 4

    Huang, Z. Y., Quantum white noise: white noiae aproach to quantum stochastic calculus,Nagoya Math. J., 1993, 129: 23.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

About this article

Cite this article

Luo, S., Yan, J. Generalized Fourier-Mehler transforms on white noise functional spaces. Chin. Sci. Bull. 43, 1321–1325 (1998). https://doi.org/10.1007/BF02883674

Download citation

Keywords

  • white notse calculus
  • general linear group
  • Fourier-Mehler transforms
  • Laplaclans