Skip to main content
Log in

Expression of afibrobacter succinogenes 1,3-1,4-β-glucanase in Potato (Solanum tuberosum)

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The potential development of potato (Solanum tuberosum) as a low-cost eukaryotic system for the production of a commercially valuable enzyme feed supplement was examined. AFibrobacter succinogenes 1,3-1,4-β-glucanase [1,3-1,4-β-D-glucan 4-glucanohydro-lase] gene under the control of the constitutive cauliflower mosaic virus 35S promoter was transferred into the potato cultivar, Desiree. The presence of the β-glucanase cDNA in the plant genome of independent transgenic potato lines was confirmed by PCR and Southern analysis. Northern analysis identified the presence of the β-glucanase mRNA in the leaf tissue of transgenic plants. Furthermore, western analysis showedF. succinogenes β-glucanase accumulations of 0.1% and 0.05% of total soluble protein in the leaves and tubers, respectively. Specific activities of the enzyme in leaves (1693 units mg-1 β-glucanase) and tubers (2978 units mg-1 β-glucanase) were comparable to that previously reported for the enzyme produced in bacteria. Lyophilization of leaves had no effect on the specific activity of the β-glucanase, and only marginally influenced the specific activity of the enzyme expressed in tubers. Relative to the control line (cv. Desiree), tuber yields were significantly reduced by 28%-72% in all lines expressing theF. succinogenes β-glucanase, and microscopy showed that expression of the β-glucanase caused changes in cell wall structure. Results of this study demonstrate that a 1,3-1,4-β-glucanase can be expressed in potato tissues, and that potato plants have the potential to be used for the commercial production of heterologous enzymes.

Resumen

Se examinó el desarrollo potencial de la papa (Solanum tuberosum) como un sistema eucarióntico de bajo costo para la producción de enzimas alimenticias suplementarias con valor comercial. Con ese fin se transfirió al cultivar de papa Desiree un gen 1,3-1,4-β-glucanasa [l,3-l,4-$-D-glucana 4-glucanahidrolasa] deFibrobacter succinogenes bajo el control del promotor constitutivo del mosaico del virus 35S de la coliflor. La presencia del cADN de β-glucanasa en el genoma de la planta de las líneas de papa transgénicas independientes fue confirmada por la reacción en cadena de la polimerasa (PCR) y el análisis meridional. El análisis septentrional identificó la presencia de mRNA de ²-glucanasa en el tejido de las hojas de las plantas transgénicas. Además, el análisis occidental mostró acumulaciones de 0.1% y 0.05% de las proteínas totales solubles deF. succinogenes β-glucanasa en las hojas y tubérculos, respectivamente. Las actividades específicas de la enzima en las hojas (1693 unidades mg-1 β-glucanasa) y en los tubérculos (2978 unidades mg-1 β-glucanasa) fueron comparables a las reportadas previamente para la enzima producida en la bacteria. La liofilización de las hojas no tuvo efecto en la actividad especifica de la β-glucanasa y sólo influyó marginalmente en la actividad especifica de la enzima expresada en los tubérculos. En relación a la línea de control (cv. Desiree), los rendimientos del tubérculo se redujeron significativamente entre 28 a 72% en todas las líneas, expresando laF. succinogenes β-glucanasa, y el microscopio mostró que la expresión de la β-glucanasa causó cambios en las estructuras de la pared de la célula. Los resultados de este estudio demuestran que la 1,3-1,4-β-glucanasa puede expresarse en tejidos de papa y que las plantas de papa tienen potencial para ser usadas en la producción comercial de enzimas heterólogas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Baah, J., T.A. Scott, L., Kawchuk, J.D. Armstrong, L.B. Selinger, K.J. Cheng, and T.A. McAllister. 2001. Feeding value in broiler chicken diets of a potato expressing a β-glucanase gene fromFibrobacter succinogenes. Can J Anim Sci (in press).

  • Campbell, G.L., and M.R. Bedford. 1992. Enzymatic applications for monogastric feeds: A review. Can J Anim Sci 72:449–466.

    Article  CAS  Google Scholar 

  • Chakraborty, S., N. Chakraborty, and A Datta 2000. Increasing the nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene fromAmaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729.

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino, R.B., A. Belanger, and R.B. D’Agostino. 1990. A suggestion for using powerful and informative tests for normality. Am Stat 44:316–321.

    Article  Google Scholar 

  • De Block, M 1988. Genotype-independent leaf disc transformation of potato (Solanum tuberosum) usingAgrobacterium tumefaciens. Theor Appl Genet 76:767–774.

    Article  Google Scholar 

  • Erfle, J.D., R.M. Teather, P.J. Wood, and J.E. Irvin. 1988. Purification and properties of a 1,3-1,4-β-D-glucanase (lichenase, 1,3-1,4-β-D-glu-can 4-glucanohydrolase, EC 3.2.1.73) fromBacteroides succinogenes cloned inEscherichia coli. Biochem. J. 255:833–841.

    PubMed  CAS  Google Scholar 

  • Gibeaut, D.M., and N.G. Carpita. 1994. Biosynthesis of plant cell wall polysaccharides. FASEB J 8:904–915.

    PubMed  CAS  Google Scholar 

  • Gohl, B., S. Aldén, K. Elwinger, and S. Thomke. 1978. Influence of β-glucanase on feeding value of barley for poultry and moisture content of excreta. Br Poultry Sci 19:4147.

    Article  Google Scholar 

  • Hajela, R.K., D.P. Horvath, S.J. Gilmour, and M.F. Thomashow 1990. Molecular cloning and expression of cor (cold-regulated) gene inAraMdopsis thaliana. Plant Physiol 93:1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Hessleman, K., K. Elwinger, M. Nilsson, S. Thomke. 1981. The effect of β-glucanase supplementation, stage of ripeness and storage treatment of barley diets fed to broiler chickens. Poultry Sci 60:2664–2671.

    Google Scholar 

  • Hoff, J.E., S.L. Lam, and H.T. Erickson. 1978. Breeding for high protein and dry matter in the potato at Purdue University. Indiana Agric Exp Stat, Res Bull 953.

  • Inglis, G.D., A Popp, L.B. Selinger, L.M. Kawchuk, D.A Gaudet, and T.A. McAllister. 2000. Production of cellulases and xylanases by low temperature basidiomycetes. Can J Microbiol 46:860–865.

    Article  PubMed  CAS  Google Scholar 

  • Irvin, J.E., and R.M. Teather. 1988. Cloning and expression of aBacteroides succinogenes mixed-linkage β-glucanase (1,3-1,4-β-D-glucan 4-glucanohydrolase) gene inEscherichia coli. Appl Envir Micro 54:2672–2676.

    CAS  Google Scholar 

  • Johnson, V.A., and C.L. Lay 1974. Genetic improvement of plant protein. Agric Food Chem 22:558–566.

    Article  CAS  Google Scholar 

  • Kawchuk, L.M 2001. Potato transformation produces value added traits. In: Khachatourians, G.G. (ed), The Handbook of Transgenic Food Plants, Marcel Dekker, Inc., New York, (in press)

    Google Scholar 

  • Kawchuk, L.M., R.R. Martin, and J. McPherson 1990. Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Mol Plant-Microbe Interact 3:301–307.

    CAS  Google Scholar 

  • Kurkela, S., and M. Franck 1990. Cloning and characterization of a cold-and ABA-inducibleArabidopsis gene. Plant Mol Biol 15:137–144.

    Article  PubMed  CAS  Google Scholar 

  • Lorito, J., S.L. Woo, I.G. Fernandez, G. Colucci, G.E. Harman, J.A. Pintor-Toro, E. Filippone, S. Muccifor, C.B. Lawrence, A. Zoina, S. Tuzun, and F. Scala. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865.

    Article  PubMed  CAS  Google Scholar 

  • Mason, H.S., J.M. Ball, J.J. Shi, X. Jiang, M.K. Estes, and C.J. Arntzen. 1996. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA 93:5335–5340.

    Article  PubMed  CAS  Google Scholar 

  • Momose, T., A. Inaba, Y. Mukai, and T. Shinkai. 1960. Approximate colorimetric estimation of blood sugar and urine sugar with the naked eye. Chem Pharm Bull 8:514–516.

    CAS  Google Scholar 

  • Momose, T., and A Inaba 1961. Mechanism of the color reaction of 3,6-dinitrophthalic acid with reducing sugars. Chem Pharm Bull 9:263–266.

    CAS  Google Scholar 

  • Okazaki, K 1970. Studies on the quality of commercial honey. I. A simple method for determination of sugars in honey. J Japan Soc Food Nutr 23:373–578.

    Google Scholar 

  • Racusen, D., and M. Foote. 1980. Induction and accumulation of major tuber proteins of potato in stem and petioles. J Food Biochem 4:43–52.

    Article  CAS  Google Scholar 

  • Salih, M.E., H.L Classen, and G.L. Campbell. 1991. Response of chickens fed on hull-less barley to dietary β-glucanase at different ages. Amin Feed Sci Technol 33:139–149.

    Article  CAS  Google Scholar 

  • SAS Institute, Inc. 1999. SAS/STAT User’s Guide, Version 8. Cary, NC. 3884 pp.

  • Selinger, LB., C.W. Forsberg, and K.-J. Cheng. 1996. The rumen: a unique source of enzyme for enhancing livestock production. Anaerobe 2:263–284.

    Article  PubMed  CAS  Google Scholar 

  • Steel, R.D.G., and J.H. Torrie 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed. McGraw-Hill, New York, 633pp.

    Google Scholar 

  • Southern, E.M 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, D.W., P.K. Havstad, and J.D. Kemp. 1992. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Trans Res 1:228–236.

    Article  CAS  Google Scholar 

  • Tacke, E., F. Salamini, and W. Rohde. 1996. Genetic engineering of potato for broad-spectrum protection against virus infection. Nature Biotechnol 14:1597–1601.

    Article  CAS  Google Scholar 

  • Teather, R.M., and J.D. Erfle. 1990. DNA sequence of a Fibrobacter succinogenes mixed-linkage β-glucanase (1,3-1,4-β-D-glucan 4-glucanohydrolase) gene. J Bacteriol 172:3837–3841.

    PubMed  CAS  Google Scholar 

  • Verwoerd, T.C., B.M.M. Dekker, and A. Hoekema. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17:2362.

    Article  PubMed  CAS  Google Scholar 

  • Walkerpeach, C.R., and J. Velten. 1994. Agrobacterium-mediated gene transfer to plant cells: cointegrate and binary vector systems, B1. Pp. 1–19. In: Gelvin, S.B., and R.A. Schilperoot, R.A. (eds), Plant Molecular Biology Manual. Kluwer Academic Publishers, Belgium.

    Google Scholar 

  • Wallis, J.G., H. Wang, and D.J. Guerre. 1997. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 35:323–330.

    Article  PubMed  CAS  Google Scholar 

  • White, W.B., H.R. Bird, M.L. Sunde, J.A. Marlett, N.A. Prentice, and W.C. Burger. 1983. Viscosity of β-D-glucan as a factor in the enzymatic improvement of barley for chicks. Poultry Sci 62:853–862.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Kawchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, J.D., Inglis, G.D., Kawchuk, L.M. et al. Expression of afibrobacter succinogenes 1,3-1,4-β-glucanase in Potato (Solanum tuberosum). Am. J. Pot Res 79, 39–48 (2002). https://doi.org/10.1007/BF02883522

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02883522

Additional key words

Navigation