Science in China Series B: Chemistry

, Volume 41, Issue 6, pp 566–574 | Cite as

New potential-energy functions for Cu, Ag and Au solids and their applications to computer simulations on metallic surfaces

  • Xinhou Liu
  • Zhen Zhen
  • H. Cox
  • J. N. Murrell
Article

Abstract

A set of potential energy functions for noble metals: copper, silver and gold crystals has been derived. New potential energy functions reproduce not only bulk properties, including elastic constants, phonon dispersion curves, cohesive energies, etc., but also surface behaviors of the metals. New potential energy functions have been used to simulate the surface properties of the three noble metals, computer simulations are in good agreement with experimental results.

Keywords

potential function noble metal surface computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jona, F., Marcus, P. M.,The Structure of Surfaces II (eds. van der Veen, J. F., van Hove, M. A.), Berlin: Springer, 1987, p90.Google Scholar
  2. 2.
    Lynn, J. W., Smith, H. G., Nicklow, R. M., Lattice dynamics of gold,Phys. Rev. B:Solid State, 1973, 8: 3493.Google Scholar
  3. 3.
    Todd, B. D., Lynden-Bell, R. M., Surface and bulk properties of metals modelled with Sutton-Chen potentials,Surf. Sci., 1993, 281: 191.CrossRefGoogle Scholar
  4. 4.
    Vlig, E., Robison, I. K., Kern, K., Relaxations in the missing-row structure of the (1×2) reconstructed surfaces of Au(110) andPt(110),Surf. Sci., 1990, 233: 248.CrossRefGoogle Scholar
  5. 5.
    Copel, M., Gustafsson, T., Structure of Au (110) determined with medium-energy-ion scattering,Phys. Rev. Lett., 1986, 57: 723s.CrossRefGoogle Scholar
  6. 6.
    Ho, K. M., Bohnen, K. P., Stability of the missing-row reconstruction of fcc (110) transition metal surfaces,Phys. Rev. Lett., 1987, 59: 1833.CrossRefGoogle Scholar
  7. 7.
    Haftel, M. I., Surface reconstruction of platinum and gold and embedded-atom model,Phys. Rev. B, 1993, 48: 2611.CrossRefGoogle Scholar
  8. 8.
    Ercolessi, E., Bartolini, A., Au surface reconstructions in the glue model,Surf. Sci., 1987, 189/190: 636.CrossRefGoogle Scholar
  9. 9.
    Miedema, A. R., Surface energies of solid metals,Z. Metallk., 1978, 69: 287.Google Scholar
  10. 10.
    Ercolessi, F., Tosatti, E., Parinello, M., Au(100) surface reconstruction,Phys. Rev. Lett., 1986, 57: 719.CrossRefGoogle Scholar
  11. 11.
    Ercolessi, F., Parinello, M., Tosatti, E., Au(100) reconstruction in the glue model,Surf. Sci., 1986, 177: 314.CrossRefGoogle Scholar
  12. 12.
    Bartolini, A., Ercolessi, F., Tosatti, E., inThe Structure of Surfaces II (eds. van der Veen, J. F., van Hove, M. A.), Berlin: Springer, 1987, p 132.Google Scholar
  13. 13.
    Lynden-Bell, R. M., Migration of adatoms on the (100) surface of face centred-cubic metals,Surf. Sci., 1991, 259: 129.CrossRefGoogle Scholar
  14. 14.
    Hammonds, K. D., Lynden-Bell, R. M., A computational study of metal stepped surfaces,Surf. Sci., 1992, 278: 437.CrossRefGoogle Scholar
  15. 15.
    Koleske, D. D., Sibener, S. J., Molecular dynamics simulations of the basal planes of Ni and Cu using Finnis-Sinclair potentials,Surf. Sci., 1993, 290: 179.CrossRefGoogle Scholar
  16. 16.
    Fang Jianyun, Johnston, R. J., Murrell, J. N., Potential-energy functions for Cu, Ag and Au solids and their applications to clusters of the elements,J. Chem. Soc. Faraday Reans. II, 1993, 89: 1659.CrossRefGoogle Scholar
  17. 17.
    Uppenbrink, J., Johnston, R. J., Murrell, J. N., Modelling transition metal surface with empirical potentials,Surf. Sci., 1994, 204: 223.CrossRefGoogle Scholar
  18. 18.
    Johnston, R. J., Fang, J-Y., An empirical many-body potential-energy function for aluminum: Application to solid phase and micmclusters,J. Chem. Phys., 1992, 97: 7809.CrossRefGoogle Scholar
  19. 19.
    Sutton, A. P., Chen, J., Long-rang Finnis-Silair potential,Phil. Mag. Lett., 1990, 61: 139.CrossRefGoogle Scholar
  20. 20.
    Mackenzie, J. K., Bonds broken at atomically flat crystal surface-Iface-centred and body centred cubic crystals,J. Phys. Chem. Solids, 1963, 23: 185.CrossRefGoogle Scholar
  21. 21.
    Desjonqueres, M. C., Cyrot-Lackmann, F., On the anisotmpy of surface tension in transition metals,Surf. Sci., 1975. 50: 257.CrossRefGoogle Scholar
  22. 22.
    Mochrie, S. G. J., Zehner, D. M., Orientational epitaxy of the hexagonally reconstructed Pt(001) surface,Phys. Rev. Lett., 1991, 67: 3117.CrossRefGoogle Scholar
  23. 23.
    Gibbs, D., Zehner, D. M., Structure and phase of the Au(001) surface: In-plane structure,Phys. Rev. B, 1990, 42: 7330.CrossRefGoogle Scholar
  24. 24.
    Sandy, A. R., Mochrie, S. G., Structure and phases of the Au(111) surface: X-ray scattering measurements,Phys. Rev. B, 1991, 43: 4667.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Xinhou Liu
    • 1
  • Zhen Zhen
    • 1
  • H. Cox
    • 2
  • J. N. Murrell
    • 2
  1. 1.Institute of Photographic ChemistryChinese Academy of SciencesBeijingChina
  2. 2.School of Chemistry, Physics and Environment ScienceUniversity of SussexBrightonU.K.

Personalised recommendations