Skip to main content
Log in

The Ag−Au (Silver-Gold) system

  • Provisional
  • Ag−Au
  • Published:
Bulletin of Alloy Phase Diagrams

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Cited References

  1. J.L. White,Trans. AIME, 215, p 178–181 (1959).

    Google Scholar 

  2. C.J. Cooke and W. Hume-Rothery,Acta Metall., 9, p 982 (1961).

    Google Scholar 

  3. J. Markali and P. Thoresen,Acta Chem. Scand., 15, p 31–35 (1961).

    Article  Google Scholar 

  4. C. Wagner,Acta Metall., 2, p 242–249 (1954).

    Article  Google Scholar 

  5. E. Jänecke,Metallurgie, 8, p 599–600 (1911).

    Google Scholar 

  6. U. Raydt,Z. Anorg. Allg. Chem., 75, p 58–62, (1912).

    Google Scholar 

  7. T. Erhard and A. Schertel,Jahrb. Berg. Huettenw. Sachsen, p 164 (1879); H. Gautier,Bull. Soc. Encour. Ind. Nat., 1, p 1318 (1896); Société d'encouragement pour l'industrie nationale, Paris, Commission des alliages, “Contribution à l'études des alliages,” p 93, Typ. Chamerot et Renouard, Paris (1901); C.T. Heycock and F.H. Neville,Philos. Trans. R. Soc. London, A189, p 69 (1897); W.C. Roberts-Austen and T. Kirke-Rose,Proc. R. Soc. London, 71, p 161–163 (1903);Chem. News, 87, p 1–2 (1903).

  8. A. Matthiessen,Pogg. Ann., 110, p 219–220 (1860).

    Google Scholar 

  9. W.C. Roberts-Austen,Philos. Mag., 8(5), p 58 (1879).

    Google Scholar 

  10. Strouhal and C. Barus,Abh. Kon. Boehm. Ges. Wiss., 21 (1883–1884).

  11. B. Beckmann, dissertation, Uppsala (1911).

  12. E. Sedström,Ann. Phys. (Leipzig),59, p 137–138 (1919); dissertation, Stockholm (1924).

    Google Scholar 

  13. W. Broniewski and K. Wesolowski,C. R. Acad. Sci. (Paris),194, p 2047–2049 (1932).

    Google Scholar 

  14. Y. Shimizu,Sci. Rep. Tohoku Univ., 21, p 829–834 (1932).

    Google Scholar 

  15. H. Auer, E. Riedl and H.J. Seemann,Z. Phys., 92, p 291–302 (1934).

    Article  ADS  Google Scholar 

  16. A. Matthiessen and C. Vogt,Pogg. Ann., 122, p 42, 45–46, 53 (1864).

    Google Scholar 

  17. E. Rudolfi,Z. Anorg. Allg. Chem., 67, p 85–88 (1910).

    Google Scholar 

  18. G. Borelius,Ann. Phys. (Leipzig),53, p 615–628 (1917).

    Google Scholar 

  19. E. Vogt,Ann. Phys. (Leipzig),14, p 8–10 (1932).

    Google Scholar 

  20. L.S. Ornstein and W.C. van Geel,Z. Phys., 72, p 488–491 (1931).

    Article  ADS  Google Scholar 

  21. E. van Aubel,Z. Phys., 75, p 119 (1932).

    Article  ADS  Google Scholar 

  22. C.H. Johansson,Ann. Phys. (Leipzig),76, p 448–449 (1925).

    Google Scholar 

  23. A. Matthiessen,Pogg Ann., 110, p 36–37 (1860).

    Google Scholar 

  24. C. Hoitsema,Z. Anorg. Allg. Chem., 41, p 66–67 (1904).

    Google Scholar 

  25. E. Gebhardt and S. Dorner,Z. Metallk., 42, p 353–358 (1951).

    Google Scholar 

  26. J.A.M. van Liempt,Recl. Trav. Chim. Pays-Bas, 45, p 203–206 (1926).

    Google Scholar 

  27. A.P. Laurie,J. Chem. Soc., 65, p 1031–1039 (1894).

    Google Scholar 

  28. G. Tammann,Z. Anorg. Allg. Chem., 107, p 144–152 (1919).

    Article  Google Scholar 

  29. A. Olander,J. Am. Chem. Soc., 53, p 3577–3588 (1931).

    Article  Google Scholar 

  30. C. Wagner and E. Engelhardt,Z. Phys. Chem. (Leipzig),A159 p 241–267 (1932).

    Google Scholar 

  31. A. Wachter,J. Am. Chem. Soc., 54, p 4609–4617 (1932).

    Article  Google Scholar 

  32. H. Borchers,Met. Erz., 29, p 392–398 (1932).

    Google Scholar 

  33. I.N. Plaksin and S.V. Shibaev,Izv. Sekt. Fiz.-Khim. Anal., 9, p 159–182 (1936).

    Google Scholar 

  34. M. LeBlanc and W. Erler,Ann. Phys. (Leipzig),16, p 321–336 (1933).

    Article  Google Scholar 

  35. N.V. Grum-Grzhimailo,Zh. Neorg. Khim., 1, p 2048–2051 (1956).

    Google Scholar 

  36. L.W. McKeehan,Phys. Rev., 20, p 424–432 (1922).

    Article  ADS  Google Scholar 

  37. H. Weiss,Proc. R. Soc. London, 108, p 652–654 (1925).

    Google Scholar 

  38. H. Jung,Z. Kristallogr., 64, p 425–429 (1926).

    Google Scholar 

  39. S. Holgersson,Ann. Phys. (Leipzig),79, p 42–46 (1926).

    Google Scholar 

  40. G. Sachs and J. Weerts,Z. Phys., 60, p 481–490 (1930).

    Article  ADS  Google Scholar 

  41. P. Wiest,Z. Phys., 81, p 121–128 (1933).

    Article  ADS  Google Scholar 

  42. O. Nygaard and L. Vegard,Skr. Nor. Vidensk.-Akad. Oslo, 1: Mat. Naturv. Kl., No. 2, p 37–40 (1947); seeStruct. Rep., 11, p 126 (1947–1948).

    Google Scholar 

  43. F. Hund and E. Trägner,Naturwissenschaften, 39, p 63 (1952).

    Article  ADS  Google Scholar 

  44. V.A. Valchikovskaya, G.P. Kushta, and O.I. Rybailo,Fiz. Met. Metalloved., 21, p 519–523 (1966); translated asPhys. Met. Metallogr. (USSR),21(4), p 35–39 (1966).

    Google Scholar 

  45. A. Guinier and R. Griffoul,C. R. Acad. Sci. (Paris),221, p 555–557 (1945); A. Guinier,Proc. Phys. Soc. London, 57, p 310–324 (1945).

    Google Scholar 

  46. Unpublished work by J.W. Fitzwilliam, reported by S. Siegel and B.L. Averbach inPhase Transformations in Solids, John Wiley & Sons, Inc., New York, p 370, 384 (1951).

    Google Scholar 

  47. N. Norman and B.E. Warren,J. Appl. Phys., 22, p 483–486 (1951).

    Article  ADS  Google Scholar 

Additional References

  1. R. Hiskes and W.A. Tiller, Generation of Chemical Potentials by Analysis of Phase Diagrams. I.Mater. Sci. Eng., No. 6, p 320–330 (1968). (Chemical potentials were calculated from thermodynamic and phase diagram data by integration of the Gibbs-Duhem equation, and compared with experiment)

    Google Scholar 

  2. R. Hiskes and W.A. Tiller, Generation of Chemical Potentials by Analysis of Phase Diagrams. II. Isomorphous Systems,Mater. Sci. Eng., No. 2-3, p 163–172 (1969). (Chemical potentials were calculated from thermodynamic and phase diagram data by integration of the Gibbs-Duhem equation, and compared with experiment)

    Google Scholar 

  3. W.A. Tiller, The Use of Phase Diagrams in Solidification, paper fromPhase Diagrams—Materials Science and Technology, Vol. 1—Theory Principles and Techniques of Phase Diagrams, Academic Press, New York, p 199–244 (1970). (Major review— includes extensive discussion of material in [49,50])

    Google Scholar 

  4. L. Karmazin, Accurate Measurement of Lattice Parameters of Silver-Gold Solid Solutions,Czech. J. Phys., 19(5), p 634–639 (1969). (Lattice parameters were measured for the entire composition range, and fitted by an analytic expression quadratic in the concentration) See Fig. 2.

    Article  ADS  Google Scholar 

  5. G. Pascoe and J. Mackowiak, The Application of Simple Models to the Direct Calculation of Possible Phase Boundaries in Binary Equilibrium Phase Diagrams from Simple Free-Energy/Concentration Functions,J. Inst. Met., 98, p 253–256 (1970). (Ag−Au binary phase diagram was calculated from free energies modeled with an ideal solution term and terms linear in temperature and composition)

    Google Scholar 

  6. B. Predel and U. Schallner, Determination of the Electronic Contribution to the Bonding in Binary Copper, Silver, and Gold Alpha-Solid Solutions from Thermodynamic Investigations,Metall. Chem. Proc. Symp. (London, 1951), p 289–299 (1972).

  7. W. Schüle and G. Grestoni, Short Range Order in Gold-Silver Alloys,Z. Metallkunde, 66 (12), p. 728–733 (1975). (Electrical resistivity in two alloys, 15.0 and 26.82 at.% Ag)

    Google Scholar 

  8. A.B. Bhatia and N.H. March, Phase Diagrams of Ascending and Minimum Type in Terms of Concentration Fluctuations in Binary Liquid and Solid Solutions,Phys. Chem. Liq., No. 1, p 45–60 (1976). (Ag−Au binary phase diagram was calculated based on conformal solution theory)

    Article  Google Scholar 

  9. P.P. Safronov, Short-Range Order and Ordering Energy in Au−Ag Alloys,Fiz. Met. Metalloved., 43(4), p 879–882 (1977) in Russian; translated asPhys. Met. Metallogr., 43 (4), p 181–184 (1977). (25 to 80 at.% Au, 5 compositions various treatments for each)

    Google Scholar 

  10. M.L. Kapoor, An Approach to Thermodynamics of Binary Substitutional Solutions,Trans. Jpn. Inst. Met., 19(10), p 519–529 (1978). (Using free volume theory and available experimental data, derived thermodynamic functions for liquid alloys)

    MathSciNet  Google Scholar 

  11. Y.C. Venudhar, L. Iyengar and K.V.K. Rao, Temperature Dependence of the Lattice Parameter and the Thermal Expansion of Silver-Gold (50 at.%) Alloy by an X-Ray Method,J. Less-Common Met., 60(2), p 41–46 (1978). (Lattice parameters from room temperature to 900°C) See Fig. 3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done at IIT Research Institute, Chicago, Illinois, under contract to the Office of Standard Reference Data, National Bureau of Standards. From [Elliott; IITRI]; bibliography through 1966.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, R.P., Shunk, F.A. The Ag−Au (Silver-Gold) system. Bulletin of Alloy Phase Diagrams 1, 45–47 (1980). https://doi.org/10.1007/BF02881183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02881183

Keywords

Navigation