Skip to main content
Log in

Femi-type acceleration of electron in γ-ray burst fireball model

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We calculate numerically the hydrodynamic evolution of a γ-ray burst fireball. The results show that refluence will emerge during fireball expansion due to negative-pressure effect. The refluence will collide with outward fluid, then shock wave will form. Electrons moving between the inward and outward fluid shells can be accelerated to 104–105 MeV by one order Femi-type acceleration with high efficiency after several collisions. Radiation of electrons with such high energy may be the observed γray bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodman, J., Are gamma-ray bursts optically thick? Ap. J., 1986, 308: L47-L50.

    Article  Google Scholar 

  2. Paczyfiski, B., Gamma-ray bursters at cosmological distances, Ap. J., 1986, 308: L43-L46.

    Article  Google Scholar 

  3. Shemi Amotz, Piran Tsvi, The appearance of cosmic fireballs, Ap. J., 1990, 365: L55-L58.

    Article  Google Scholar 

  4. Paczyński, B., Super-Eddington winds from neutmn stars, Ap. J., 1990, 363: 218–226.

    Article  Google Scholar 

  5. Mészáros, P., Ress, M. J., Relativistic fireballs and their impact on external matte-Models for cosmological gamma-ray bursts, Ap. J., 1993, 405: 278–284.

    Article  Google Scholar 

  6. Fenimor, E. E., Madras, C.D., Nayakshin, S., Expanding relativistic shells and gamma-ray burst temporal structure, Ap. J., 1996, 473: 998–1012.

    Article  Google Scholar 

  7. Sari, R., Piran, T., Variability in gamma-ray bursts, Ap. J., 1997, 485: 270–273.

    Article  Google Scholar 

  8. Paczyński, B., Xu, G., Neutrino bursts from gamma-ray bursts, Ap. J., 1994, 427: 708–713.

    Article  Google Scholar 

  9. Ress, M. J., Mészáros, P., Unsteady oudlow models for cosmological gamma-ray bursts, Ap. J., 1994, 430: L93-L96.

    Article  Google Scholar 

  10. Mészáros, P., Laguna, P., Ress, M. J., Gasdynamics of relativistically expanding gamma-ray burst sources-Kinematics, energetics, magnetic fields, and eficiency, Ap. J., 1993, 415: 181–190.

    Article  Google Scholar 

  11. Piran, T., Shemi, A., Narayan, R., Hydrodynamics of relativistic fireballs, MNRAS, 1993, 263: 861–867.

    Google Scholar 

  12. Cohen, E., Piran, T., Sari, R., Fluid dynamics of semiradiative blast waves, Ap. J., 1998, 509: 717–727.

    Article  Google Scholar 

  13. Huang, Y. F., Dai, Z. G., Wei, D.M. et al., Gamma-ray bursts: post-burst evolution of fireballs, MNRAS, 1998, 298: 459–463.

    Article  Google Scholar 

  14. Kobayashi Shiho, Piran Tsvi, Sari Re’em, Hydrodynamics of a relativistic fireball: The complete evolution, Ap. J., 1999, 513: 669–678.

    Article  Google Scholar 

  15. Shi Changchun, Relativistic Hydrodynamics (in Chinese), Beijing: Science Press, 1992, P207–210.

    Google Scholar 

  16. Xu Aoao, Tang Yuhua, Introduction of Cosmic Electrodynamics (in Chinese), Beijing: Higher Education Press, 1987, 96: 635.

    Google Scholar 

  17. Jiang Shuhao, Sun Qingxin, Numerical Solution to Partial Differential Equation (in Chinese), Hangzhou: Zhejiang University Press, 1985, 115–120.

    Google Scholar 

  18. Tung Zhang, Ling Hsiao, The Riemann Problem and Interaction of Wave in Gas Dynamics, Titman Monographs, Essex: Longman Scientific and Technology, 1989, 122–124.

    Google Scholar 

  19. Sedov, Self-similar Method and Dimension Theory in Mechanics (in Chinese), Beijing: Science Press, 1982, 278–280.

    Google Scholar 

  20. Cohen, E., Katz, J. L., Piran, T. et al., Possible evidence for relativistic shocks in gamma-ray bursts, Ap. J., 1997, 488: 330–337.

    Article  Google Scholar 

  21. Schaefer, B. E., Palmer, D., Dingus, B. L. et al., Gamma-ray burst spectral shapes from 2 keV to 500 MeV, Ap. J., 1997, 492: 696–702.

    Article  Google Scholar 

  22. Huang Yongfeng, Lu Tan, Advances in Astrophysics, 1998, 16: 330–336.

    Google Scholar 

  23. Wu Bobing, Fenimore. E., Spectral lags of gamma-ray bursts from Ginga and BATSE, Ap. J., 2000, 535: L29-L32.

    Article  Google Scholar 

  24. You Junhan, Mechanism of Radiation in Astrophysics (in Chinese), Beijing: Science Press, 1998, 183–184.

    Google Scholar 

  25. Landu, L. D., Lifshitz, E. M., Statistic Physics, Beijing: People Education Press, 1964, 209–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Tang, S., Zhang, P. et al. Femi-type acceleration of electron in γ-ray burst fireball model. Sci. China Ser. A-Math. 44, 1608–1614 (2001). https://doi.org/10.1007/BF02880801

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02880801

Keywords

Navigation