Skip to main content
Log in

On well posedness of best simultaneous approximation problems in Banach spaces

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The well posedness of best simultaneous approximation problems is considered. We establish the generic results on the well posedness of the best simultaneous approximation problems for any closed weakly compact nonempty subset in a strictly convex Kadec Banach space. Further, we prove that the set of all points inE(G) such that the best simultaneous approximation problems are not well posed is a u- porous set inE(G) whenX is a uniformly convex Banach space. In addition, we also investigate the generic property of the ambiguous loci of the best simultaneous approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinkus, A., uniqueness in vector-valued approximation, J. Approx. Theory, 1993, 73: 17–92.

    Article  MATH  MathSciNet  Google Scholar 

  2. Li, C., Watson, G. A., On best simultaneous approximation, J. Approx. Theory, 1997, 91: 332–348.

    Article  MATH  MathSciNet  Google Scholar 

  3. Tanimoto, S., A characterization of best simultaneous approximations, J. Appmx. Theory, 1989, 59: 359–361.

    Article  MATH  MathSciNet  Google Scholar 

  4. Watson, G. A., A characterization of best simultaneous approximations, J. Approx. Theory, 1993, 75: 175–182.

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, C., Watson, G. A., On best simultaneous appmximation of a finite set of functions, Computer Math. Applic., 1999, 37: 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  6. Stechkin, S. B., Approximation properties of sets in norrned linear spaces, Rev. Roumaine Math. Pures and Appl. (in Russian), 1963, 8: 5–18.

    MATH  Google Scholar 

  7. Borwein, J. M., Fitzpatrick, S., Existence of nearest points in Banach spaces, Can. J. Math., 1989, 41: 702–720.

    MATH  MathSciNet  Google Scholar 

  8. De Blasi, F.S., Myjak, J., On a generalized best appmximation problem, J. Approx. Theory, 1998, 94: 54–72.

    Article  MATH  MathSciNet  Google Scholar 

  9. Georgiev, P. G., The stmng Ekeland variational principle, the strung drop theorem and applications, J. Math. Anal. Appl., 1988, 131: 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  10. Lau, K. S., Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J., 1978, 27: 791–795.

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, C., On mutually nearest and mutually furthest points in reflexive Banach spaces, J. Approx. Theory, 2000, 103: 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, C., On well posed generalized best approximation problems, J. Approx. Thory, 2000, 107: 96–108.

    Article  MATH  Google Scholar 

  13. Li, C, Almost K-Chebyshev sets, Acta. Math. Sin. (in Chinese), 1990, 33: 251–259.

    MATH  Google Scholar 

  14. De Blasi, F. S., Myjak, J., Papini, P. L., On mutually nearest and mutually furthest points of sets in Banach spaces, J. Appmx. Theory, 1992, 70: 142–155.

    Article  MATH  MathSciNet  Google Scholar 

  15. Dontchev, A., Zolezzi, T., Well Posed Optimization Problems, Lecture Notes in Math., Vol. 1543, New York: Springer- Verlag, 1993.

    Google Scholar 

  16. Li, C., Wang, X. H., Almost Chebyshev set with respect to bounded subsets, Science in China, Ser. A, 1997, 40: 375–383.

    Article  MATH  Google Scholar 

  17. Ni, R. X., Li, C., On well posedness of farthest and simultaneous farthest problems in Banach spaces, Act. Math. Sinica (in Chinese), 2000, 43: 421–426.

    MATH  MathSciNet  Google Scholar 

  18. De Blasi, F. S., Myjak. J., Ambiguous loci in best approximation theory, in Approximation Theory, Spline Functions and Application (ed. Singh, S. P.), Dordrecht: Kluwer Academic Publishers, 1992, 341–349.

    Google Scholar 

  19. De Blasi, F. S., Myjak, J., Ambiguous loci of the nearest point mapping in Banach spaces, Arch. Math., 1993, 61: 377–384.

    Article  MATH  MathSciNet  Google Scholar 

  20. De Blasi, F. S., Myjak, J., Papini, P. L., Pomus sets in best approximation theory, J. London Math. Sac., 1991, 44 (2): 135–142.

    Article  MATH  MathSciNet  Google Scholar 

  21. De Blasi, F. S., Kenderov, P. S., Myjak, J. et al., Ambiguous loci of the metric pmjection onto compact starshaped sets in a Banach space, Mh. Math., 1995, 119: 23–36.

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhivkov, N. V.. Compacta with dense ambiguous loci of metric projections and antipmjections. Roc. Amer. Math. Soc., 1995, 123: 3403–3411.

    Article  MATH  MathSciNet  Google Scholar 

  23. Phelps, R. R., Convex Functions, Monotone Operators and Differentiability, Lect. Notes in Math., New York: Springer-Verlag, 1989, 1364.

    Google Scholar 

  24. Diestel, J., Geometry of Banach Spaces-Selected Topic, Lect. Notes in Math.,New York: Springer-Verlag. 1975, 485.

    Google Scholar 

  25. Xu, S. Y., Li, C., Yang, W. S., Nonlinear Approximation Theory in Banach Spaces, Beijing: Science Press, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C. On well posedness of best simultaneous approximation problems in Banach spaces. Sci. China Ser. A-Math. 44, 1558–1570 (2001). https://doi.org/10.1007/BF02880795

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02880795

Keywords

Navigation